The proofs of α→α in P - W

Journal of Symbolic Logic 61 (1):195-211 (1996)
  Copy   BIBTEX

Abstract

The syntactic structure of the system of pure implicational relevant logic P - W is investigated. This system is defined by the axioms B = (b → c) → (a → b) → a → c, B' = (a → b) → (b → c) → a → c, I = a → a, and the rules of substitution and modus ponens. A class of λ-terms, the closed hereditary right-maximal linear λ-terms, and a translation of such λ-terms M to BB'I-combinators M + is introduced. It is shown that a formula α is provable in P - W if and only if α is a type of some λ-term in this class. Hence these λ-terms represent proof figures in the Natural Deduction version of P - W. Errol Martin (1982) proved that no formula with form α → α is provable in P - W without using the axiom I. We show that a β-normal form λ-term M in the class is η reducible to λ x.x if the translated BB'I-combinator M + contains I. Using this theorem and Martin's result, we prove that a λ-term in the class is βη-reducible to λ x.x if the λ-term has a type α → α. Hence the structure of proofs of α → α in P - W is determined

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,448

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
77 (#269,114)

6 months
9 (#455,691)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references