Abstract
The purpose of this note is to present a strong form of the liar paradox. It is strong because the logical resources needed to generate the paradox are weak, in each of two senses. First, few expressive resources required: conjunction, negation, and identity. In particular, this form of the liar does not need to make any use of the conditional. Second, few inferential resources are required. These are: (i) conjunction introduction; (ii) substitution of identicals; and (iii) the inference: From ¬(p ∧ p), infer ¬ p. It is, interestingly enough, also essential to the argument that the ‘strong’ form of the diagonal lemma be used: the one that delivers a term λ such that we can prove: λ = ¬ T(⌈λ⌉); rather than just a sentence Λ for which we can prove: Λ ≡ ¬T(⌈Λ⌉).
The truth-theoretic principles used to generate the paradox are these: ¬(S ∧ T(⌈¬S⌉); and ¬(¬S ∧ ¬T(⌈¬S⌉). These are classically equivalent to the two directions of the T-scheme, but they are intuitively weaker.
The lesson I would like to draw is: There can be no consistent solution to the Liar paradox that does not involve abandoning truth-theoretic principles that should be every bit as dear to our hearts as the T-scheme. So we shall have to learn to live with the Liar, one way or another.