Benacerraf's Dilemma and Natural Realism for Arithmetic

Dissertation, University of Ottawa (Canada) (2002)
  Copy   BIBTEX

Abstract

A natural realist approach to the philosophy of arithmetic is defended by way of considering and arguing against contemporary attempts to solve Paul Benacerraf's dilemma . The first horn of the dilemma concerns the existence of abstract mathematical objects, which seems necessitated by a desire for a unified semantics. Benacerraf adopts an extensional semantics whereby the reference of terms for natural numbers must be abstract objects. The second horn concerns a desirable causal constraint on knowledge, according to which "for X to know that S is true requires some causal relation to obtain between X and the referents of the names, predicates, and quantifiers of S". Within the philosophical tradition, Benacerraf's dilemma crystallizes the tension between realists and empiricists . It is shown that natural realism and naturalism meet. ;Both horns of the dilemma are amended.objects are conceived along conceptualist lines such that their existence is not mind-independent. The causal constraint is refined by drawing upon the work of Mark Steiner . Natural realism is the notion that the truth-values of arithmetical statements are recognition-transcendent. Natural realism explains why one and only one arithmetic is applicable. It is in some sense discovered, which is captured by the idea that arithmetical statements have truth-values even if one is not able to adduce what they are. ;It is argued that with proper emendation, like that of Philip Kitcher , empiricism as envisioned by J. S. Mill is defensible. Furthermore, the epistemology of arithmetical knowledge is divided into two tiers. The first principles of arithmetic are acquired by causal interaction with physical objects. As Kitcher has shown, empiricism functions at the first-tier. The a priori is revised such that arithmetical knowledge generated from the first-tier is considered non-empirical. ;It is argued that pragmatists' indispensability argument, once qualified, allows that arithmetic's applicability is one reason to consider natural realism for that domain . Furthermore, this thesis provides a case where aspects of Hilary Putnam's early and later views are rendered consistent. By way of utilizing both Putnam's writing in favour of realism , and those that break with them , it is suggested that he should not have abandoned his earlier view. In a nutshell, the realization of knowledge can depend upon agents' values, methods, and so on, without forcing the abandonment of realism . Putnam's early view sets the criteria for when one can be a realist about a given domain

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,448

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Proof, Practice, and Progress.Mary Catherine Leng - 2002 - Dissertation, University of Toronto (Canada)
A Defense of Arithmetical Platonism.Thomas Michael Norton-Smith - 1988 - Dissertation, University of Illinois at Urbana-Champaign
Social Kinds, Social Objects, and Vague Boundaries.Francesco Franda - 2021 - Proceedings of the 2nd International Workshop on Ontology of Social, Legal and Economic Entities (SoLEE).
A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
Can realism be naturalised? Putnam on sense, Commonsense, and the senses.Christopher Norris - 2000 - Principia: An International Journal of Epistemology 4 (1):89-140.

Analytics

Added to PP
2015-02-06

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references