Abstract
In his logical foundation of arithmetic, Frege faced the problem that the semantic interpretation of his system does not determine the reference of the abstract terms completely. The contextual definition of number, for instance, does not decide whether the number 5 is identical to Julius Caesar. In a late writing, Quine claimed that the indeterminacy of reference established by Frege’s Caesar problem is a special case of the indeterminacy established by his proxy-function argument. The present paper aims to show that Frege’s Caesar problem does not really support the conclusions that Quine draws from the proxy-function argument. On the contrary, it reveals that Quine’s argument is a non sequitur: it does not establish that there are alternative interpretations of our terms that are equally correct, but only that these terms are ambiguous. The latter kind of referential indeterminacy implies that almost all sentences of our overall theory of the world are either false or neither true nor false, because they contain definite descriptions whose uniqueness presupposition is not fulfilled. The proxy-function argument must therefore be regarded as a reductio ad absurdum of Quine’s behaviorist premise that the reference of terms is determined only by our linguistic behavior.