Conditional computability of real functions with respect to a class of operators

Annals of Pure and Applied Logic 164 (5):550-565 (2013)
  Copy   BIBTEX

Abstract

For any class of operators which transform unary total functions in the set of natural numbers into functions of the same kind, we define what it means for a real function to be uniformly computable or conditionally computable with respect to this class. These two computability notions are natural generalizations of certain notions introduced in a previous paper co-authored by Andreas Weiermann and in another previous paper by the same authors, respectively. Under certain weak assumptions about the class in question, we show that conditional computability is preserved by substitution, that all conditionally computable real functions are locally uniformly computable, and that the ones with compact domains are uniformly computable. The introduced notions have some similarity with the uniform computability and its non-uniform extension considered by Katrin Tent and Martin Ziegler, however, there are also essential differences between the conditional computability and the non-uniform computability in question

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,130

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Computable operators on regular sets.Martin Ziegler - 2004 - Mathematical Logic Quarterly 50 (4-5):392-404.
Type‐2 computability on spaces of integrable functions.Daren Kunkle - 2004 - Mathematical Logic Quarterly 50 (4):417-430.
Lp -Computability.Ning Zhong & Bing-Yu Zhang - 1999 - Mathematical Logic Quarterly 45 (4):449-456.
Is the Mandelbrot set computable?Peter Hertling - 2005 - Mathematical Logic Quarterly 51 (1):5-18.
A uniformly computable Implicit Function Theorem.Timothy H. McNicholl - 2008 - Mathematical Logic Quarterly 54 (3):272-279.
Effectivity in Spaces with Admissible Multirepresentations.Matthias Schröder - 2002 - Mathematical Logic Quarterly 48 (S1):78-90.
Weak computability and representation of reals.Xizhong Zheng & Robert Rettinger - 2004 - Mathematical Logic Quarterly 50 (4-5):431-442.

Analytics

Added to PP
2013-12-12

Downloads
53 (#407,693)

6 months
12 (#289,909)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Dimiter Skordev
Sofia University

Citations of this work

On subrecursive complexity of integration.Ivan Georgiev - 2020 - Annals of Pure and Applied Logic 171 (4):102777.

Add more citations

References found in this work

On the Definition of Computable Function of a Real Variable.J. C. Shepherdson - 1976 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 22 (1):391-402.
On the Definition of Computable Function of a Real Variable.J. C. Shepherdson - 1976 - Mathematical Logic Quarterly 22 (1):391-402.
Computable Functionals.A. Grzegorczyk - 1959 - Journal of Symbolic Logic 24 (1):50-51.

Add more references