Abstract
We give proofs of Ramsey’s and Hindman’s theorems in which the corresponding homogeneous sets are found with a forcing argument. The object of this paper is the study of the partial order involved in the proof of Hindman’s theorem. We are going to denote it by PFIN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
PFIN\end{document}. As a main result, we prove that Mathias forcing does not add Matet reals, which implies that PFIN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
PFIN\end{document} is not equivalent to Mathias forcing.