Equivalents for a Quasivariety to be Generated by a Single Structure

Studia Logica 91 (1):113-123 (2009)
  Copy   BIBTEX

Abstract

We present some equivalent conditions for a quasivariety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}$$\end{document} of structures to be generated by a single structure. The first such condition, called the embedding property was found by A.I. Mal′tsev in [6]. It says that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf A}, {\bf B} \in \mathcal {K}}$$\end{document} are nontrivial, then there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf C} \in \mathcal{K}}$$\end{document} such that A and B are embeddable into C. One of our equivalent conditions states that the set of quasi-identities valid in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} is closed under a certain Gentzen type rule which is due to J. Łoś and R. Suszko [5].

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,173

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
The countable existentially closed pseudocomplemented semilattice.Joël Adler - 2017 - Archive for Mathematical Logic 56 (3-4):397-402.

Analytics

Added to PP
2009-01-28

Downloads
66 (#319,641)

6 months
13 (#256,009)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

References found in this work

Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
Remarks on Sentential Logics.R. Suszko - 1975 - Journal of Symbolic Logic 40 (4):603-604.

Add more references