From Fine-Grain to Coarse-Grain Modeling: Estimating Kinetic Parameters of DNA Molecules

Acta Biotheoretica 72 (4):1-16 (2024)
  Copy   BIBTEX

Abstract

Coarse-grain models are essential to understand the biological function of DNA molecules because the length and time scales of the sequence-dependent physical properties of DNA are often beyond the reach of experimental and all-atom computational methods. Simulating coarse-grain models of DNA, e.g. using Langevin dynamics, requires the parametrization of both potential and kinetic energy functions. Many studies have shown that the flexibility (i.e., potential energy) of a DNA molecule depends on its sequence. In contrast, little is known about the sequence-dependence of DNA mass parameters required to model its kinetic energy. In this paper, an algebraic expression is derived for the kinetic energy as a function of linear and angular velocities of each DNA base parameterized by its mass, center of mass, and rotational inertia tensor. The parameters of this function are then approximated from a set of fine-grain molecular dynamics simulations representing all combinations of the four DNA base pairs AT, TA, GC, and CG, in different sequence contexts. Compatibility conditions associated with the assumption of each base being modeled as a rigid body were verified to be good approximations. The kinetic parameters were found to be significantly different between the four G, C, A, and T bases, and to not be dependent on the sequence context. This suggests that the effective kinetic parameters of a DNA base may depend only on the base itself, not on its neighbors.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,394

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2024-11-20

Downloads
3 (#1,851,180)

6 months
3 (#1,471,455)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references