Understanding as a bottleneck for the data-driven approach to psychiatric science

Philosophy and the Mind Sciences 4 (2023)
  Copy   BIBTEX

Abstract

The data-driven approach to psychiatric science leverages large volumes of patient data to construct machine learning models with the goal of optimizing clinical decision making. Advocates claim that this methodology is well-placed to deliver transformative improvements to psychiatric science. I argue that talk of a data-driven revolution in psychiatry is premature. Transformative improvements, cashed out in terms of better patient outcomes, cannot be achieved without addressing patient understanding. That is, how patients understand their own mental illnesses. I conceptualize understanding as the possession of adaptive mental constructs through which experience is mediated. I suggest that this notion of understanding serves as a bottleneck which any prospective approach to psychiatry must address to be efficacious. Subsequently I argue that, though the data-driven approach is undoubtedly powerful, it does not have a straightforward means of unblocking the bottleneck of understanding. I suggest that the data-driven approach must be supplemented with significant theoretical progress if it is to transform psychiatry.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,505

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Understanding climate phenomena with data-driven models.Benedikt Knüsel & Christoph Baumberger - 2020 - Studies in History and Philosophy of Science Part A 84 (C):46-56.
Data-Driven Health Monitoring: Visual and Analytical Solutions for Improved Care.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):640-655.

Analytics

Added to PP
2023-04-12

Downloads
20 (#1,043,550)

6 months
6 (#869,904)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Barnaby Crook
Universität Bayreuth

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references