Applying inconsistent mathematics

Abstract

At various times, mathematicians have been forced to work with inconsistent mathematical theories. Sometimes the inconsistency of the theory in question was apparent (e.g. the early calculus), while at other times it was not (e.g. pre-paradox na¨ıve set theory). The way mathematicians confronted such difficulties is the subject of a great deal of interesting work in the history of mathematics but, apart from the crisis in set theory, there has been very little philosophical work on the topic of inconsistent mathematics. In this paper I will address a couple of philosophical issues arising from the applications of inconsistent mathematics. The first is the issue of whether finding applications for inconsistent mathematics commits us to the existence of inconsistent objects. I then consider what we can learn about a general philosophical account of the applicability of mathematics from successful applications of inconsistent mathematics.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,314

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-03-04

Downloads
630 (#47,687)

6 months
629 (#2,223)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Mark Colyvan
University of Sydney

References found in this work

No references found.

Add more references