Generative Inferences Based on Learned Relations

Cognitive Science 41 (S5):1062-1092 (2017)
  Copy   BIBTEX

Abstract

A key property of relational representations is their generativity: From partial descriptions of relations between entities, additional inferences can be drawn about other entities. A major theoretical challenge is to demonstrate how the capacity to make generative inferences could arise as a result of learning relations from non-relational inputs. In the present paper, we show that a bottom-up model of relation learning, initially developed to discriminate between positive and negative examples of comparative relations, can be extended to make generative inferences. The model is able to make quasi-deductive transitive inferences and to qualitatively account for human responses to generative questions such as “What is an animal that is smaller than a dog?” These results provide evidence that relational models based on bottom-up learning mechanisms are capable of supporting generative inferences.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,486

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2016-11-17

Downloads
44 (#529,991)

6 months
5 (#702,808)

Historical graph of downloads
How can I increase my downloads?