A Hierarchical Bayesian Model of Human Decision‐Making on an Optimal Stopping Problem

Cognitive Science 30 (3):1-26 (2006)
  Copy   BIBTEX

Abstract

We consider human performance on an optimal stopping problem where people are presented with a list of numbers independently chosen from a uniform distribution. People are told how many numbers are in the list, and how they were chosen. People are then shown the numbers one at a time, and are instructed to choose the maximum, subject to the constraint that they must choose a number at the time it is presented, and any choice below the maximum is incorrect. We present empirical evidence that suggests people use threshold-based models to make decisions, choosing the first currently maximal number that exceeds a fixed threshold for that position in the list. We then develop a hierarchical generative account of this model family, and use Bayesian methods to learn about the parameters of the generative process, making inferences about the threshold decision models people use. We discuss the interesting aspects of human performance on the task, including the lack of learning, and the presence of large individual differences, and consider the possibility of extending the modeling framework to account for individual differences. We also use the modeling results to discuss the merits of hierarchical, generative and Bayesian models of cognitive processes more generally.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,290

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-11-21

Downloads
32 (#696,492)

6 months
6 (#825,551)

Historical graph of downloads
How can I increase my downloads?