Abstract
The universal generalization problem is the question: What entitles one to conclude that a property established for an individual object holds for any individual object in the domain? This amounts to the question: Why is the rule of universal generalization justified? In the modern and contemporary age Descartes, Locke, Berkeley, Hume, Kant, Mill, Gentzen gave alternative solutions of the universal generalization problem. In this paper I consider Locke’s, Berkeley’s and Gentzen’s solutions and argue that they are problematic. Then I consider an alternative formulation of universal generalization which depends on the view that mathematical objects are individual objects and are hypotheses introduced to solve mathematical problems, and that mathematical proofs are argument schemata. I argue that this alternative formulation allows one to overcome the problems of Locke’s, Berkeley’s and Gentzen’s solutions, and is related to the approach to generality in Greek mathematics. I also argue that there is a connection between the present formulation of universal generalization and a special form of the analogy rule which is implicit in Proclus’ approach to the universal generalization problem.