Abstract
In the static field configuration, a spatially-Variable Speed of Light (VSL) scalar gravity model with Lorentz-Poincaré interpretation was shown to reproduce the phenomenology implied by the Schwarzschild metric. In the present development, we effectively cover configurations with source kinematics due to an induced sweep velocity field w. The scalar-vector model now provides a Hamiltonian description for particles and photons in full accordance with the first Post-Newtonian (1-PN) approximation of General Relativity Theory (GRT). This result requires the validity of Poincaré’s Principle of Relativity, i.e. the unobservability of ‘preferred’ frame movement. Poincaré’s principle fixes the amplitude of the sweep velocity field of the moving source, or equivalently the ‘vector potential’ ξ of GRT (e.g.; S. Weinberg, Gravitation and cosmology, [1972]), and provides the correct 1-PN limit of GRT. The implementation of this principle requires acceleration transformations derived from gravitationally modified Lorentz transformations. A comparison with the acceleration transformation in GRT is done. The present scope of the model is limited to weak-field gravitation without retardation and with gravitating test particles. In conclusion the model’s merits in terms of a simpler space, time and gravitation ontology—in terms of a Lorentz-Poincaré-type interpretation—are explained (e.g. for ‘frame dragging’, ‘harmonic coordinate condition’)