Abstract
The increasing integration of artificial intelligence (AI) in healthcare presents a host of ethical, legal, social, and political challenges involving various stakeholders. These challenges prompt various studies proposing frameworks and guidelines to tackle these issues, emphasizing distinct phases of AI development, deployment, and oversight. As a result, the notion of responsible AI has become widespread, incorporating ethical principles such as transparency, fairness, responsibility, and privacy. This paper explores the existing literature on AI use in healthcare to examine how it addresses, defines, and discusses the concept of responsibility. We conducted a scoping review of literature related to AI responsibility in healthcare, searching databases and reference lists between January 2017 and January 2022 for terms related to “responsibility” and “AI in healthcare”, and their derivatives. Following screening, 136 articles were included. Data were grouped into four thematic categories: (1) the variety of terminology used to describe and address responsibility; (2) principles and concepts associated with responsibility; (3) stakeholders’ responsibilities in AI clinical development, use, and deployment; and (4) recommendations for addressing responsibility concerns. The results show the lack of a clear definition of AI responsibility in healthcare and highlight the importance of ensuring responsible development and implementation of AI in healthcare. Further research is necessary to clarify this notion to contribute to developing frameworks regarding the type of responsibility (ethical/moral/professional, legal, and causal) of various stakeholders involved in the AI lifecycle.