Abstract
Arithmetical self-reference through diagonalization is compared with self-recognition in a mirror, in a series of diagrams that show the structure and main stages of construction of self-referential sentences. A Gödel code is compared with a mirror, Gödel numbers with mirror images, numerical reference to arithmetical formulas with using a mirror to see things indirectly, self-reference with looking at one’s own image, and arithmetical provability of self-reference with recognition of the mirror image. The comparison turns arithmetical self-reference into an idealized model of self-recognition and the conception(s) of self based on that capacity.