Choice-free stone duality

Journal of Symbolic Logic 85 (1):109-148 (2020)
  Copy   BIBTEX

Abstract

The standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,290

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Spectra of Quasi-Boolean Algebras.Yajie Lv & Wenjuan Chen - forthcoming - Logic Journal of the IGPL.
Boolean Algebras and Distributive Lattices Treated Constructively.John L. Bell - 1999 - Mathematical Logic Quarterly 45 (1):135-143.
Reduced coproducts of compact hausdorff spaces.Paul Bankston - 1987 - Journal of Symbolic Logic 52 (2):404-424.

Analytics

Added to PP
2019-07-04

Downloads
105 (#200,105)

6 months
8 (#549,811)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Nick Bezhanishvili
University of Amsterdam
Wesley H. Holliday
University of California, Berkeley

References found in this work

No references found.

Add more references