A New Proof of the McKinsey–Tarski Theorem

Studia Logica 106 (6):1291-1311 (2018)
  Copy   BIBTEX

Abstract

It is a landmark theorem of McKinsey and Tarski that if we interpret modal diamond as closure, then \ is the logic of any dense-in-itself metrizable space. The McKinsey–Tarski Theorem relies heavily on a metric that gives rise to the topology. We give a new and more topological proof of the theorem, utilizing Bing’s Metrization Theorem.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,551

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2018-03-17

Downloads
27 (#828,813)

6 months
6 (#869,904)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Nick Bezhanishvili
University of Amsterdam

References found in this work

Semantical Analysis of Modal Logic I. Normal Propositional Calculi.Saul A. Kripke - 1963 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9 (5‐6):67-96.
Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
Modal Logics of Metric Spaces.Guram Bezhanishvili, David Gabelaia & Joel Lucero-Bryan - 2015 - Review of Symbolic Logic 8 (1):178-191.

View all 8 references / Add more references