Connected modal logics

Archive for Mathematical Logic 50 (3-4):287-317 (2011)
  Copy   BIBTEX

Abstract

We introduce the concept of a connected logic (over S4) and show that each connected logic with the finite model property is the logic of a subalgebra of the closure algebra of all subsets of the real line R, thus generalizing the McKinsey-Tarski theorem. As a consequence, we obtain that each intermediate logic with the finite model property is the logic of a subalgebra of the Heyting algebra of all open subsets of R.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,756

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Logics above s4 and the lebesgue measure algebra.Tamar Lando - 2017 - Review of Symbolic Logic 10 (1):51-64.
Intermediate Logics and the de Jongh property.Dick Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
Intermediate Logics and the de Jongh property.Dick de Jongh, Rineke Verbrugge & Albert Visser - 2011 - Archive for Mathematical Logic 50 (1-2):197-213.
The Baire Closure and its Logic.G. Bezhanishvili & D. Fernández-Duque - 2024 - Journal of Symbolic Logic 89 (1):27-49.
Deduction Theorem in Congruential Modal Logics.Krzysztof A. Krawczyk - 2023 - Notre Dame Journal of Formal Logic 64 (2):185-196.
Characteristic Formulas of Partial Heyting Algebras.Alex Citkin - 2013 - Logica Universalis 7 (2):167-193.

Analytics

Added to PP
2013-10-27

Downloads
44 (#568,750)

6 months
6 (#745,101)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Modal Logic: Graph. Darst.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - New York: Cambridge University Press. Edited by Maarten de Rijke & Yde Venema.
Modal Logic.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - Studia Logica 76 (1):142-148.
Modal logic.Yde Venema - 2000 - Philosophical Review 109 (2):286-289.
An ascending chain of S4 logics.Kit Fine - 1974 - Theoria 40 (2):110-116.
« Everywhere » and « here ».Valentin Shehtman - 1999 - Journal of Applied Non-Classical Logics 9 (2-3):369-379.

View all 11 references / Add more references