Uncomputably Noisy Ergodic Limits

Notre Dame Journal of Formal Logic 53 (3):347-350 (2012)
  Copy   BIBTEX

Abstract

V’yugin has shown that there are a computable shift-invariant measure on $2^{\mathbb{N}}$ and a simple function $f$ such that there is no computable bound on the rate of convergence of the ergodic averages $A_{n}f$ . Here it is shown that in fact one can construct an example with the property that there is no computable bound on the complexity of the limit; that is, there is no computable bound on how complex a simple function needs to be to approximate the limit to within a given $\varepsilon$

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,130

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2012-09-26

Downloads
28 (#796,220)

6 months
4 (#1,246,434)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Jeremy Avigad
Carnegie Mellon University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references