Indestructibility when the first two measurable cardinals are strongly compact

Journal of Symbolic Logic 87 (1):214-227 (2022)
  Copy   BIBTEX

Abstract

We prove two theorems concerning indestructibility properties of the first two strongly compact cardinals when these cardinals are in addition the first two measurable cardinals. Starting from two supercompact cardinals $\kappa _1 < \kappa _2$, we force and construct a model in which $\kappa _1$ and $\kappa _2$ are both the first two strongly compact and first two measurable cardinals, $\kappa _1$ ’s strong compactness is fully indestructible, and $\kappa _2$ ’s strong compactness is indestructible under $\mathrm {Add}$ for any ordinal $\delta $. This provides an answer to a strengthened version of a question of Sargsyan found in [17, Question 5]. We also investigate indestructibility properties that may occur when the first two strongly compact cardinals are not only the first two measurable cardinals, but also exhibit nontrivial degrees of supercompactness.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,394

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2022-04-08

Downloads
17 (#1,152,036)

6 months
7 (#710,381)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.

View all 10 references / Add more references