Results for 'distributive lattice'

966 found
Order:
  1.  40
    Distributive Lattices with a Negation Operator.Sergio Arturo Celani - 1999 - Mathematical Logic Quarterly 45 (2):207-218.
    In this note we introduce and study algebras of type such that is a bounded distributive lattice and ⌝ is an operator that satisfies the condition ⌝ = a ⌝ b and ⌝ 0 = 1. We develop the topological duality between these algebras and Priestley spaces with a relation. In addition, we characterize the congruences and the subalgebras of such an algebra. As an application, we will determine the Priestley spaces of quasi-Stone algebras.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  2.  52
    Distributive lattices with a dual homomorphic operation. II.Alasdair Urquhart - 1981 - Studia Logica 40 (4):391 - 404.
    An Ockham lattice is defined to be a distributive lattice with 0 and 1 which is equipped with a dual homomorphic operation. In this paper we prove: (1) The lattice of all equational classes of Ockham lattices is isomorphic to a lattice of easily described first-order theories and is uncountable, (2) every such equational class is generated by its finite members. In the proof of (2) a characterization of orderings of with respect to which the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  3.  2
    Bounded distributive lattices with strict implication and weak difference.Sergio Celani, Agustín Nagy & William Zuluaga Botero - forthcoming - Archive for Mathematical Logic:1-36.
    In this paper we introduce the class of weak Heyting–Brouwer algebras (WHB-algebras, for short). We extend the well known duality between distributive lattices and Priestley spaces, in order to exhibit a relational Priestley-like duality for WHB-algebras. Finally, as an application of the duality, we build the tense extension of a WHB-algebra and we employ it as a tool for proving structural properties of the variety such as the finite model property, the amalgamation property, the congruence extension property and the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  54
    Distributive lattices with an operator.Alejandro Petrovich - 1996 - Studia Logica 56 (1-2):205 - 224.
    It was shown in [3] (see also [5]) that there is a duality between the category of bounded distributive lattices endowed with a join-homomorphism and the category of Priestley spaces endowed with a Priestley relation. In this paper, bounded distributive lattices endowed with a join-homomorphism, are considered as algebras and we characterize the congruences of these algebras in terms of the mentioned duality and certain closed subsets of Priestley spaces. This enable us to characterize the simple and subdirectly (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  5.  63
    Bounded distributive lattices with strict implication.Sergio Celani & Ramon Jansana - 2005 - Mathematical Logic Quarterly 51 (3):219-246.
    The present paper introduces and studies the variety WH of weakly Heyting algebras. It corresponds to the strict implication fragment of the normal modal logic K which is also known as the subintuitionistic local consequence of the class of all Kripke models. The tools developed in the paper can be applied to the study of the subvarieties of WH; among them are the varieties determined by the strict implication fragments of normal modal logics as well as varieties that do not (...)
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations  
  6.  58
    Distributive lattices with a dual homomorphic operation.Alasdair Urquhart - 1979 - Studia Logica 38 (2):201 - 209.
    The lattices of the title generalize the concept of a De Morgan lattice. A representation in terms of ordered topological spaces is described. This topological duality is applied to describe homomorphisms, congruences, and subdirectly irreducible and free lattices in the category. In addition, certain equational subclasses are described in detail.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  7.  30
    Computational complexity for bounded distributive lattices with negation.Dmitry Shkatov & C. J. Van Alten - 2021 - Annals of Pure and Applied Logic 172 (7):102962.
    We study the computational complexity of the universal and quasi-equational theories of classes of bounded distributive lattices with a negation operation, i.e., a unary operation satisfying a subset of the properties of the Boolean negation. The upper bounds are obtained through the use of partial algebras. The lower bounds are either inherited from the equational theory of bounded distributive lattices or obtained through a reduction of a global satisfiability problem for a suitable system of propositional modal logic.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  44
    Boolean Algebras and Distributive Lattices Treated Constructively.John L. Bell - 1999 - Mathematical Logic Quarterly 45 (1):135-143.
    Some aspects of the theory of Boolean algebras and distributive lattices–in particular, the Stone Representation Theorems and the properties of filters and ideals–are analyzed in a constructive setting.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  74
    Distributive-lattice semantics of sequent calculi with structural rules.Alexej P. Pynko - 2009 - Logica Universalis 3 (1):59-94.
    The goal of the paper is to develop a universal semantic approach to derivable rules of propositional multiple-conclusion sequent calculi with structural rules, which explicitly involve not only atomic formulas, treated as metavariables for formulas, but also formula set variables, upon the basis of the conception of model introduced in :27–37, 2001). One of the main results of the paper is that any regular sequent calculus with structural rules has such class of sequent models that a rule is derivable in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Bounded distributive lattices with strict implication.Sergio A. Celani & Ramón Jansana Ferrer - 2005 - Mathematical Logic Quarterly 51 (3):219.
     
    Export citation  
     
    Bookmark   5 citations  
  11.  25
    (1 other version)Distributive lattices with a dual endomorphism.H. P. Sankappanavar - 1985 - Mathematical Logic Quarterly 31 (25‐28):385-392.
  12. Decision problem for separated distributive lattices.Yuri Gurevich - 1983 - Journal of Symbolic Logic 48 (1):193-196.
    It is well known that for all recursively enumerable sets X 1 , X 2 there are disjoint recursively enumerable sets Y 1 , Y 2 such that $Y_1 \subseteq X_1, Y_2 \subseteq X_2$ and Y 1 ∪ Y 2 = X 1 ∪ X 2 . Alistair Lachlan called distributive lattices satisfying this property separated. He proved that the first-order theory of finite separated distributive lattices is decidable. We prove here that the first-order theory of all separated (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  18
    Tense Operators on Distributive Lattices with Implication.Gustavo Pelaitay & William Zuluaga - 2023 - Studia Logica 111 (4):687-708.
    Inspired by the definition of tense operators on distributive lattices presented by Chajda and Paseka in 2015, in this paper, we introduce and study the variety of tense distributive lattices with implication and we prove that these are categorically equivalent to a full subcategory of the category of tense centered Kleene algebras with implication. Moreover, we apply such an equivalence to describe the congruences of the algebras of each variety by means of tense 1-filters and tense centered deductive (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  53
    Free q-distributive lattices.Roberto Cignoli - 1996 - Studia Logica 56 (1-2):23 - 29.
    The dual spaces of the free distributive lattices with a quantifier are constructed, generalizing Halmos' construction of the dual spaces of free monadic Boolean algebras.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  15.  11
    On Weak Lewis Distributive Lattices.Ismael Calomino, Sergio A. Celani & Hernán J. San Martín - forthcoming - Studia Logica:1-41.
    In this paper we study the variety \(\textsf{WL}\) of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the \(\{\vee,\wedge,\Rightarrow,\bot,\top \}\) -fragment of the arithmetical base preservativity logic \(\mathsf {iP^{-}}\). The variety \(\textsf{WL}\) properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  26
    A characterization of MV-algebras free over finite distributive lattices.Vincenzo Marra - 2008 - Archive for Mathematical Logic 47 (3):263-276.
    Mundici has recently established a characterization of free finitely generated MV-algebras similar in spirit to the representation of the free Boolean algebra with a countably infinite set of free generators as any Boolean algebra that is countable and atomless. No reference to universal properties is made in either theorem. Our main result is an extension of Mundici’s theorem to the whole class of MV-algebras that are free over some finite distributive lattice.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17.  39
    On Categorical Equivalence of Weak Monadic Residuated Distributive Lattices and Weak Monadic c-Differential Residuated Distributive Lattices.Jun Tao Wang, Yan Hong She, Peng Fei He & Na Na Ma - 2023 - Studia Logica 111 (3):361-390.
    The category \(\mathbb {DRDL}{'}\), whose objects are c-differential residuated distributive lattices satisfying the condition \(\textbf{CK}\), is the image of the category \(\mathbb {RDL}\), whose objects are residuated distributive lattices, under the categorical equivalence \(\textbf{K}\) that is constructed in Castiglioni et al. (Stud Log 90:93–124, 2008). In this paper, we introduce weak monadic residuated lattices and study some of their subvarieties. In particular, we use the functor \(\textbf{K}\) to relate the category \(\mathbb {WMRDL}\), whose objects are weak monadic residuated (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  73
    Kripke Models, Distributive Lattices, and Medvedev Degrees.Sebastiaan A. Terwijn - 2007 - Studia Logica 85 (3):319-332.
    We define a variant of the standard Kripke semantics for intuitionistic logic, motivated by the connection between constructive logic and the Medvedev lattice. We show that while the new semantics is still complete, it gives a simple and direct correspondence between Kripke models and algebraic structures such as factors of the Medvedev lattice.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  84
    Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics I.Viorica Sofronie-Stokkermans - 2000 - Studia Logica 64 (1):93-132.
    The main goal of this paper is to explain the link between the algebraic and the Kripke-style models for certain classes of propositional logics. We start by presenting a Priestley-type duality for distributive lattices endowed with a general class of well-behaved operators. We then show that finitely-generated varieties of distributive lattices with operators are closed under canonical embedding algebras. The results are used in the second part of the paper to construct topological and non-topological Kripke-style models for logics (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  20.  13
    Belief functions on distributive lattices.Chunlai Zhou - 2013 - Artificial Intelligence 201 (C):1-31.
  21.  62
    On Principal Congruences in Distributive Lattices with a Commutative Monoidal Operation and an Implication.Hernán Javier San Martín & Ramon Jansana - 2019 - Studia Logica 107 (2):351-374.
    In this paper we introduce and study a variety of algebras that properly includes integral distributive commutative residuated lattices and weak Heyting algebras. Our main goal is to give a characterization of the principal congruences in this variety. We apply this description in order to study compatible functions.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  66
    Topological Representations of Distributive Lattices and Brouwerian Logics.M. H. Stone - 1938 - Journal of Symbolic Logic 3 (2):90-91.
  23.  12
    Closure Operators on Complete Almost Distributive Lattices-III.Calyampudi Radhakrishna Rao & Venugopalam Undurthi - 2015 - Bulletin of the Section of Logic 44 (1/2):81-93.
    In this paper, we prove that the lattice of all closure operators of a complete Almost Distributive Lattice L with fixed maximal element m is dual atomistic. We define the concept of a completely meet-irreducible element in a complete ADL and derive a necessary and sufficient condition for a dual atom of Φ (L) to be complemented.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  50
    Quantifier Elimination for Distributive Lattices and Measure Algebras.Volker Weispfenning - 1985 - Mathematical Logic Quarterly 31 (14-18):249-261.
  25.  47
    Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics II.Viorica Sofronie-Stokkermans - 2000 - Studia Logica 64 (2):151-172.
    The main goal of this paper is to explain the link between the algebraic models and the Kripke-style models for certain classes of propositional non-classical logics. We consider logics that are sound and complete with respect to varieties of distributive lattices with certain classes of well-behaved operators for which a Priestley-style duality holds, and present a way of constructing topological and non-topological Kripke-style models for these types of logics. Moreover, we show that, under certain additional assumptions on the variety (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  26.  16
    A Note on some Characterization of Distributive Lattices of Finite Length.Marcin Łazarz & Krzysztof Siemieńczuk - 2015 - Bulletin of the Section of Logic 44 (1/2):15-17.
    Using known facts we give a simple characterization of the distributivity of lattices of finite length.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  28
    Gödel algebras free over finite distributive lattices.Stefano Aguzzoli, Brunella Gerla & Vincenzo Marra - 2008 - Annals of Pure and Applied Logic 155 (3):183-193.
    Gödel algebras form the locally finite variety of Heyting algebras satisfying the prelinearity axiom =. In 1969, Horn proved that a Heyting algebra is a Gödel algebra if and only if its set of prime filters partially ordered by reverse inclusion–i.e. its prime spectrum–is a forest. Our main result characterizes Gödel algebras that are free over some finite distributive lattice by an intrisic property of their spectral forest.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  20
    Erratum to: Congruences and Ideals in a Distributive Lattice with Respect to a Derivation.Hasan Barzegar - 2019 - Bulletin of the Section of Logic 48 (1).
    The present note is an Erratum for the two theorems of the paper "Congruences and ideals in a distributive lattice with respect to a derivation" by M. Sambasiva Rao.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29. A representation theory for modalized distributive lattices.John Bell - manuscript
    By a lattice we shall always mean a distributive lattice which is bounded, i.e. has both a bottom element 0 and a top element 1. Lattice homomorphisms will always be assumed to preserve 0 and 1.
     
    Export citation  
     
    Bookmark  
  30.  35
    Some elementary properties of conditionally distributive lattices.Jacek Hawranek & Jan Zygmunt - 1983 - Bulletin of the Section of Logic 12 (3):117-120.
    The notion of a conditionally distributive lattice was introduced by B. Wolniewicz while formally investigating the ontology of situations . In several of this lectures he has appealed for a study of that class of lattices. The present abstract is a response to that request.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  39
    Normal filters of distributive lattices.M. Sambasiva Rao - 2012 - Bulletin of the Section of Logic 41 (3/4):131-143.
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  30
    Unification on Subvarieties of Pseudocomplemented Distributive Lattices.Leonardo Cabrer - 2016 - Notre Dame Journal of Formal Logic 57 (4):477-502.
    In this paper subvarieties of pseudocomplemented distributive lattices are classified by their unification type. We determine the unification type of every particular unification problem in each subvariety of pseudocomplemented distributive lattices.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33.  34
    Two identities for lattices, distributive lattices and modular lattices with a constant.Saburo Tamura - 1975 - Notre Dame Journal of Formal Logic 16 (1):137-140.
  34. Finite axiomatizability of logics of distributive lattices with negation.Sérgio Marcelino & Umberto Rivieccio - forthcoming - Logic Journal of the IGPL.
    This paper focuses on order-preserving logics defined from varieties of distributive lattices with negation, and in particular on the problem of whether these can be axiomatized by means Hilbert-style calculi that are finite. On the negative side, we provide a syntactic condition on the equational presentation of a variety that entails failure of finite axiomatizability for the corresponding logic. An application of this result is that the logic of all distributive lattices with negation is not finitely axiomatizable; we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  18
    Products of skeletons of finite distributive lattices.Joanna Grygiel - 2011 - Bulletin of the Section of Logic 40 (1/2):55-61.
    Direct download  
     
    Export citation  
     
    Bookmark  
  36.  31
    Congruences and ideals in a distributive lattice with respect to a derivation.M. Sambasiva Rao - 2013 - Bulletin of the Section of Logic 42 (1/2):1-10.
  37.  25
    Certain sets of postulates for distributive lattices with the constant elements.Bolesław Sobociński - 1972 - Notre Dame Journal of Formal Logic 13 (1):119-123.
  38.  27
    (1 other version)F‐Multipliers and the Localization of Distributive Lattices II.George Georgescu - 1991 - Mathematical Logic Quarterly 37 (19‐22):293-300.
    Direct download  
     
    Export citation  
     
    Bookmark  
  39.  13
    (1 other version)Some nonstandard methods applied to distributive lattices.Mai Gehrke, Matt Insall & Klaus Kaiser - 1990 - Mathematical Logic Quarterly 36 (2):123-131.
  40.  37
    Peirce's Logical Graphs for Boolean Algebras and Distributive Lattices.Minghui Ma - 2018 - Transactions of the Charles S. Peirce Society 54 (3):320.
    Peirce introduced Existential Graphs in late 1896, and they were systematically investigated in his 1903 Lowell Lectures. Alpha graphs for classical propositional logic constitute the first part of EGs. The second and the third parts are the beta graphs for first-order logic and the gamma graphs for modal and higher-order logics, among others. As a logical syntax, EGs are two-dimensional graphs, or diagrams, in contrast to the linear algebraic notations. Peirce's theory of EGs is not only a theory of logical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Decidable algorithmic problems on relatively complemented distributive lattices which cannot be simultaneously decidable.S. T. Fedoryaev - 1995 - Bulletin of Symbolic Logic 1:109.
  42.  25
    On finitely based consequence determined by a distributive lattice.Kazimiera Dyrda & Tadeusz Prucnal - 1980 - Bulletin of the Section of Logic 9 (2):60-64.
  43.  13
    An abbreviation of Croisot's axiom-system for distributive lattices with $I$.Bolesław Sobociński - 1972 - Notre Dame Journal of Formal Logic 13 (1):139-141.
  44.  37
    No finite axiomatizations for posets embeddable into distributive lattices.Rob Egrot - 2018 - Annals of Pure and Applied Logic 169 (3):235-242.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  22
    Six new sets of independent axioms for distributive lattices with $O$ and $I$.Bolesław Sobociński - 1962 - Notre Dame Journal of Formal Logic 3 (3):187-192.
  46.  61
    The lattice of distributive closure operators over an algebra.Josep M. Font & Ventura Verdú - 1993 - Studia Logica 52 (1):1 - 13.
    In our previous paper Algebraic Logic for Classical Conjunction and Disjunction we studied some relations between the fragmentL of classical logic having just conjunction and disjunction and the varietyD of distributive lattices, within the context of Algebraic Logic. The central tool in that study was a class of closure operators which we calleddistributive, and one of its main results was that for any algebraA of type (2,2) there is an isomorphism between the lattices of allD-congruences ofA and of all (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  47.  22
    Some numerical characterization of finite distributive lattices.Joanna Grygiel - 2004 - Bulletin of the Section of Logic 33 (3):127-133.
    Direct download  
     
    Export citation  
     
    Bookmark  
  48.  20
    Counting weak Heyting algebras on finite distributive lattices.M. Alizadeh & N. Joharizadeh - 2015 - Logic Journal of the IGPL 23 (2):247-258.
  49.  2
    Distributive PBZ $$^{*}$$ -lattices.Claudia Mureşan - 2024 - Studia Logica 112 (6):1319-1341.
    Arising in the study of Quantum Logics, PBZ \(^{*}\) -_lattices_ are the paraorthomodular Brouwer–Zadeh lattices in which the pairs of elements with their Kleene complements satisfy the Strong De Morgan condition with respect to the Brouwer complement. They form a variety \(\mathbb {PBZL}^{*}\) which includes that of orthomodular lattices considered with an extended signature (by endowing them with a Brouwer complement coinciding with their Kleene complement), as well as antiortholattices (whose Brouwer complements are trivial). The former turn out to have (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50.  2
    Distributive PBZ$$^{*}$$-lattices.Claudia Mureşan - 2024 - Studia Logica 112 (6):1319-1341.
    Arising in the study of Quantum Logics, PBZ $$^{*}$$ -lattices are the paraorthomodular Brouwer–Zadeh lattices in which the pairs of elements with their Kleene complements satisfy the Strong De Morgan condition with respect to the Brouwer complement. They form a variety $$\mathbb {PBZL}^{*}$$ which includes that of orthomodular lattices considered with an extended signature (by endowing them with a Brouwer complement coinciding with their Kleene complement), as well as antiortholattices (whose Brouwer complements are trivial). The former turn out to have (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 966