Results for 'choice, entanglement, quantum information, qubit, universal logic, well-ordering theorem'

958 found
Order:
  1. The Identity of Logic and the World in Terms of Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (21):1-4.
    One can construct a mapping between Hilbert space and the class of all logic if the latter is defined as the set of all well-orderings of some relevant set (or class). That mapping can be further interpreted as a mapping of all states of all quantum systems, on the one hand, and all logic, on the other hand. The collection of all states of all quantum systems is equivalent to the world (the universe) as a whole. Thus (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  4. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Cognition according to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  10. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11. Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  12. The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  13. The Completeness: From Henkin's Proposition to Quantum Computer.Vasil Penchev - 2018 - Логико-Философские Штудии 16 (1-2):134-135.
    The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14. The isomorphism of Minkowski space and the separable complex Hilbert space and its physical interpretation.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier:SSRN) 13 (31):1-3.
    An isomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That isomorphism can be interpreted physically as the invariance between a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting another way for proving it, more concise and meaningful physically. Mathematically, the isomorphism means the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  16. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  18. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to (...) contextuality. The relevant mathematical structure is Hilbert arithmetic in a wide sense, in the framework of which Hilbert arithmetic in a narrow sense and the qubit Hilbert space are dual to each other. A few cases involving set theory are possible: (1) only within the case “n=3” and implicitly, within any next level of “n” in Fermat’s equation; (2) the identification of the case “n=3” and the general case utilizing the axiom of choice rather than the axiom of induction. If the former is the case, the application of set theory and arithmetic can remain disjunctively divided: set theory, “locally”, within any level; and arithmetic, “globally”, to all levels. If the latter is the case, the proof is thoroughly within set theory. Thus, the relevance of Yablo’s paradox to the statement of Fermat’s last theorem is avoided in both cases. The idea of “arithmetic mechanics” is sketched: it might deduce the basic physical dimensions of mechanics (mass, time, distance) from the axioms of arithmetic after a relevant generalization, Furthermore, a future Part III of the paper is suggested: FLT by mediation of Hilbert arithmetic in a wide sense can be considered as another expression of Gleason’s theorem in quantum mechanics: the exclusions about (n = 1, 2) in both theorems as well as the validity for all the rest values of “n” can be unified after the theory of quantum information. The availability (respectively, non-availability) of solutions of Fermat’s equation can be proved as equivalent to the non-availability (respectively, availability) of a single probabilistic measure as to Gleason’s theorem. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  21.  77
    Quantum Information Versus Epistemic Logic: An Analysis of the Frauchiger–Renner Theorem.Florian J. Boge - 2019 - Foundations of Physics 49 (10):1143-1165.
    A recent no-go theorem (Frauchiger and Renner in Nat Commun 9(1):3711, 2018) establishes a contradiction from a specific application of quantum theory to a multi- agent setting. The proof of this theorem relies heavily on notions such as ‘knows’ or ‘is certain that’. This has stimulated an analysis of the theorem by Nurgalieva and del Rio (in: Selinger P, Chiribella G (eds) Proceedings of the 15th international conference on quantum physics and logic (QPL 2018). EPTCS (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  22. The Quantity of Quantum Information and Its Metaphysics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (18):1-6.
    The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  23.  17
    Probing the meaning of quantum mechanics: superpositions, dynamics, semantics and identity: Quantum Mechanics and Quantum Information: Physical, Philosophical and Logical Approaches, Cagliari, Italy, 23-25 July 2014.Diederik Aerts, Christian de Ronde, Hector Freytes & Roberto Giuntini (eds.) - 2016 - New Jersey: World Scientific.
    This book provides an interdisciplinary approach to one of the most fascinating and important open questions in science: What is quantum mechanics really talking about? In the last decades quantum mechanics has given rise to a new quantum technological era, a revolution taking place today especially within the field of quantum information processing; which goes from quantum teleportation and cryptography to quantum computation. Quantum theory is probably our best confirmed physical theory. However, in (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  24. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  61
    Type reducing correspondences and well-orderings: Frege's and zermelo's constructions re-examined.J. L. Bell - 1995 - Journal of Symbolic Logic 60 (1):209-221.
    A key idea in both Frege's development of arithmetic in theGrundlagen[7] and Zermelo's 1904 proof [10] of the well-ordering theorem is that of a “type reducing” correspondence between second-level and first-level entities. In Frege's construction, the correspondence obtains betweenconceptandnumber, in Zermelo's (through the axiom of choice), betweensetandmember. In this paper, a formulation is given and a detailed investigation undertaken of a system ℱ of many-sorted first-order logic (first outlined in the Appendix to [6]) in which this notion (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  26. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27. A quantum computer only needs one universe.A. M. Steane - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):469-478.
    The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to ''perform many computations simultaneously'' except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of parallel (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  28. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. God's Dice.Vasil Penchev - 2015 - In S. Oms, J. Martínez, M. García-Carpintero & J. Díez (eds.), Actas: VIII Conference of the Spanish Society for Logic, Methodology, and Philosophy of Sciences. Barcelona: Universitat de Barcelona. pp. 297-303.
    Einstein wrote his famous sentence "God does not play dice with the universe" in a letter to Max Born in 1920. All experiments have confirmed that quantum mechanics is neither wrong nor “incomplete”. One can says that God does play dice with the universe. Let quantum mechanics be granted as the rules generalizing all results of playing some imaginary God’s dice. If that is the case, one can ask how God’s dice should look like. God’s dice turns out (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  42
    Apologii︠a︡ Sofistov: Reli︠a︡tivizm Kak Ontologicheskai︠a︡ Sistema.Igorʹ Nikolaevich Rassokha - 2009 - Kharʹkov: Kharkivsʹka Nat͡sionalʹna Akademii͡a Misʹkoho Hospodarstva.
    Sophists’ apologia. -/- Sophists were the first paid teachers ever. These ancient Greek enlighteners taught wisdom. Protagoras, Antiphon, Prodicus, Hippias, Lykophron are most famous ones. Sophists views and concerns made a unified encyclopedic system aimed at teaching common wisdom, virtue, management and public speaking. Of the contemporary “enlighters”, Deil Carnegy’s educational work seems to be the most similar to sophism. Sophists were the first intellectuals – their trade was to sell knowledge. They introduced a new type of teacher-student relationship – (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31. Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  32. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33. The mathematical import of zermelo's well-ordering theorem.Akihiro Kanamori - 1997 - Bulletin of Symbolic Logic 3 (3):281-311.
    Set theory, it has been contended, developed from its beginnings through a progression ofmathematicalmoves, despite being intertwined with pronounced metaphysical attitudes and exaggerated foundational claims that have been held on its behalf. In this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  34. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. Infinity, Choice, and Hume’s Principle.Stephen Mackereth - 2024 - Journal of Philosophical Logic 53 (5):1413-1439.
    It has long been known that in the context of axiomatic second-order logic (SOL), Hume’s Principle (HP) is mutually interpretable with “the universe is Dedekind infinite” (DI). In this paper, we offer a more fine-grained analysis of the logical strength of HP, measured by deductive implications rather than interpretability. Our main result is that HP is not deductively conservative over SOL + DI. That is, SOL + HP proves additional theorems in the language of pure second-order logic that are not (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  37. A conceptual construction of complexity levels theory in spacetime categorical ontology: Non-Abelian algebraic topology, many-valued logics and dynamic systems. [REVIEW]R. Brown, J. F. Glazebrook & I. C. Baianu - 2007 - Axiomathes 17 (3-4):409-493.
    A novel conceptual framework is introduced for the Complexity Levels Theory in a Categorical Ontology of Space and Time. This conceptual and formal construction is intended for ontological studies of Emergent Biosystems, Super-complex Dynamics, Evolution and Human Consciousness. A claim is defended concerning the universal representation of an item’s essence in categorical terms. As an essential example, relational structures of living organisms are well represented by applying the important categorical concept of natural transformations to biomolecular reactions and relational (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  38.  21
    Infinity, Choice, and Hume’s Principle.Stephen Mackereth - 2024 - Journal of Philosophical Logic 53 (5):1413-1439.
    It has long been known that in the context of axiomatic second-order logic (SOL), Hume’s Principle (HP) is mutually interpretable with “the universe is Dedekind infinite” (DI). In this paper, we offer a more fine-grained analysis of the logical strength of HP, measured by deductive implications rather than interpretability. Our main result is that HP is not deductively conservative over SOL + DI. That is, SOL + HP proves additional theorems in the language of pure second-order logic that are not (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39. Probing the meaning of quantum mechanics: information, contextuality, relationalism and entanglement: Proceedings of the II International Workshop on Quantum Mechanics and Quantum Information: Physical, Philosophical and Logical Approaches, CLEA, Brussels Free University, Belgium, 23-24 July 2015.Diederik Aerts, Dalla Chiara, Maria Luisa, Christian de Ronde & Decio Krause (eds.) - 2019 - New Jersey: World Scientific.
    This book provides an interdisciplinary perspective on one of the most fascinating and important open questions in science: What is quantum mechanics talking about? Quantum theory is perhaps our best confirmed physical theory. However, despite its great empirical effectiveness and the subsequent technological developments that it gave rise to in the 20th century, from the interpretation of the periodic table of elements to CD players, holograms and quantum state teleportation, it stands even today without a universally accepted (...)
     
    Export citation  
     
    Bookmark  
  40. Locality in the Everett Interpretation of Quantum Field Theory.Mark A. Rubin - 2002 - Foundations of Physics 32 (10):1495-1523.
    Recently it has been shown that transformations of Heisenberg-picture operators are the causal mechanism which allows Bell-theorem-violating correlations at a distance to coexist with locality in the Everett interpretation of quantum mechanics. A calculation to first order in perturbation theory of the generation of EPRB entanglement in nonrelativistic fermionic field theory in the Heisenberg picture illustrates that the same mechanism leads to correlations without nonlocality in quantum field theory as well. An explicit transformation is given to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  41. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42. On the Possibility of Quantum Informational Structural Realism.Terrell Ward Bynum - 2014 - Minds and Machines 24 (1):123-139.
    In The Philosophy of Information, Luciano Floridi presents an ontological theory of Being qua Being, which he calls “Informational Structural Realism”, a theory which applies, he says, to every possible world. He identifies primordial information (“dedomena”) as the foundation of any structure in any possible world. The present essay examines Floridi’s defense of that theory, as well as his refutation of “Digital Ontology” (which some people might confuse with his own). Then, using Floridi’s ontology as a starting point, the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  43.  27
    “Is logic a physical variable?” Introduction to the Special Issue.Michał Eckstein & Bartłomiej Skowron - 2020 - Philosophical Problems in Science 69:7-13.
    “Is logic a physical variable?” This thought-provoking question was put forward by Michael Heller during the public lecture “Category Theory and Mathematical Structures of the Universe” delivered on 30th March 2017 at the National Quantum Information Center in Sopot. It touches upon the intimate relationship between the foundations of physics, mathematics and philosophy. To address this question one needs a conceptual framework, which is on the one hand rigorous and, on the other hand capacious enough to grasp the diversity (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  44. Natural Cybernetics of Time, or about the Half of any Whole.Vasil Penchev - 2021 - Information Systems eJournal (Elsevier: SSRN) 4 (28):1-55.
    Norbert Wiener’s idea of “cybernetics” is linked to temporality as in a physical as in a philosophical sense. “Time orders” can be the slogan of that natural cybernetics of time: time orders by itself in its “screen” in virtue of being a well-ordering valid until the present moment and dividing any totality into two parts: the well-ordered of the past and the yet unordered of the future therefore sharing the common boundary of the present between them when (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  45.  63
    Quantum information in neural systems.Danko D. Georgiev - 2021 - Symmetry 13 (5):773.
    Identifying the physiological processes in the central nervous system that underlie our conscious experiences has been at the forefront of cognitive neuroscience. While the principles of classical physics were long found to be unaccommodating for a causally effective consciousness, the inherent indeterminism of quantum physics, together with its characteristic dichotomy between quantum states and quantum observables, provides a fertile ground for the physical modeling of consciousness. Here, we utilize the Schrödinger equation, together with the Planck-Einstein relation between (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  63
    The Axiom of Choice in Second‐Order Predicate Logic.Christine Gaßner - 1994 - Mathematical Logic Quarterly 40 (4):533-546.
    The present article deals with the power of the axiom of choice within the second-order predicate logic. We investigate the relationship between several variants of AC and some other statements, known as equivalent to AC within the set theory of Zermelo and Fraenkel with atoms, in Henkin models of the one-sorted second-order predicate logic with identity without operation variables. The construction of models follows the ideas of Fraenkel and Mostowski. It is e. g. shown that the well-ordering (...) for unary predicates is independent from AC for binary predicates and from the trichotomy law for unary predicates. Moreover, we show that the AC for binary predicates follows neither from the trichotomy law for unary predicates nor from Zorn's lemma for unary predicates nor from the formalization of the axiom of choice for disjoint families of sets for binary predicates, and that the trichotomy law for unary predicates does not follow from AC for binary predicates. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  48
    From Frege to Gödel. [REVIEW]P. K. H. - 1967 - Review of Metaphysics 21 (1):168-169.
    It is difficult to describe this book without praising it. Collected here in one volume are some thirty-six high quality translations into English of the most important foreign-language works in mathematical logic, as well as articles and letters by Whitehead, Russell, Norbert Weiner and Post. The contents of the volume are arranged in chronological order, beginning with Frege's Begriffsschrift—translated in its entirety—and concluding with Gödel's famous "On Formally Undecidable Propositions" and Herbrand's "On the Consistency of Arithmetic". The translation of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   87 citations  
  48. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49. Toward a More Natural Expression of Quantum Logic with Boolean Fractions.Philip G. Calabrese - 2005 - Journal of Philosophical Logic 34 (4):363-401.
    This paper uses a non-distributive system of Boolean fractions (a|b), where a and b are 2-valued propositions or events, to express uncertain conditional propositions and conditional events. These Boolean fractions, 'a if b' or 'a given b', ordered pairs of events, which did not exist for the founders of quantum logic, can better represent uncertain conditional information just as integer fractions can better represent partial distances on a number line. Since the indeterminacy of some pairs of quantum events (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  50. General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 958