Results for 'arithmetically saturated model of PA'

967 found
Order:
  1.  38
    Arithmetically Saturated Models of Arithmetic.Roman Kossak & James H. Schmerl - 1995 - Notre Dame Journal of Formal Logic 36 (4):531-546.
    The paper presents an outline of the general theory of countable arithmetically saturated models of PA and some of its applications. We consider questions concerning the automorphism group of a countable recursively saturated model of PA. We prove new results concerning fixed point sets, open subgroups, and the cofinality of the automorphism group. We also prove that the standard system of a countable arithmetically saturated model of PA is determined by the lattice of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  2.  22
    A Galois correspondence for countable short recursively saturated models of PA.Erez Shochat - 2010 - Mathematical Logic Quarterly 56 (3):228-238.
    In this paper we investigate the properties of automorphism groups of countable short recursively saturated models of arithmetic. In particular, we show that Kaye's Theorem concerning the closed normal subgroups of automorphism groups of countable recursively saturated models of arithmetic applies to automorphism groups of countable short recursively saturated models as well. That is, the closed normal subgroups of the automorphism group of a countable short recursively saturated model of PA are exactly the stabilizers of (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  52
    (1 other version)Automorphisms of Countable Recursively Saturated Models of PA: A Survey.Henryk Kotlarski - 1995 - Notre Dame Journal of Formal Logic 36 (4):505-518.
    We give a survey of automorphisms of countable recursively saturated models of Peano Arithmetic.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  20
    On maximal subgroups of the automorphism group of a countable recursively saturated model of PA.Roman Kossak, Henryk Kotlarski & James H. Schmerl - 1993 - Annals of Pure and Applied Logic 65 (2):125-148.
    We show that the stabilizer of an element a of a countable recursively saturated model of arithmetic M is a maximal subgroup of Aut iff the type of a is selective. This is a point of departure for a more detailed study of the relationship between pointwise and setwise stabilizers of certain subsets of M and the types of elements in those subsets. We also show that a complete type of PA is 2-indiscernible iff it is minimal in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  5.  48
    Automorphisms of Countable Short Recursively Saturated Models of PA.Erez Shochat - 2008 - Notre Dame Journal of Formal Logic 49 (4):345-360.
    A model of Peano Arithmetic is short recursively saturated if it realizes all its bounded finitely realized recursive types. Short recursively saturated models of $\PA$ are exactly the elementary initial segments of recursively saturated models of $\PA$. In this paper, we survey and prove results on short recursively saturated models of $\PA$ and their automorphisms. In particular, we investigate a certain subgroup of the automorphism group of such models. This subgroup, denoted $G|_{M(a)}$, contains all the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  31
    Elementary Cuts in Saturated Models of Peano Arithmetic.James H. Schmerl - 2012 - Notre Dame Journal of Formal Logic 53 (1):1-13.
    A model $\mathscr{M} = (M,+,\times, 0,1,<)$ of Peano Arithmetic $({\sf PA})$ is boundedly saturated if and only if it has a saturated elementary end extension $\mathscr{N}$. The ordertypes of boundedly saturated models of $({\sf PA})$ are characterized and the number of models having these ordertypes is determined. Pairs $(\mathscr{N},M)$, where $\mathscr{M} \prec_{\sf end} \mathscr{N} \models({\sf PA})$ for saturated $\mathscr{N}$, and their theories are investigated. One result is: If $\mathscr{N}$ is a $\kappa$-saturated model of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  35
    Automorphisms of recursively saturated models of arithmetic.Richard Kaye, Roman Kossak & Henryk Kotlarski - 1991 - Annals of Pure and Applied Logic 55 (1):67-99.
    We give an examination of the automorphism group Aut of a countable recursively saturated model M of PA. The main result is a characterisation of strong elementary initial segments of M as the initial segments consisting of fixed points of automorphisms of M. As a corollary we prove that, for any consistent completion T of PA, there are recursively saturated countable models M1, M2 of T, such that Aut[ncong]Aut, as topological groups with a natural topology. Other results (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  8.  48
    Four Problems Concerning Recursively Saturated Models of Arithmetic.Roman Kossak - 1995 - Notre Dame Journal of Formal Logic 36 (4):519-530.
    The paper presents four open problems concerning recursively saturated models of Peano Arithmetic. One problems concerns a possible converse to Tarski's undefinability of truth theorem. The other concern elementary cuts in countable recursively saturated models, extending automorphisms of countable recursively saturated models, and Jonsson models of PA. Some partial answers are given.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  16
    Automorphism Groups of Saturated Models of Peano Arithmetic.Ermek S. Nurkhaidarov & James H. Schmerl - 2014 - Journal of Symbolic Logic 79 (2):561-584.
    Letκbe the cardinality of some saturated model of Peano Arithmetic. There is a set of${2^{{\aleph _0}}}$saturated models of PA, each having cardinalityκ, such that wheneverMandNare two distinct models from this set, then Aut(${\cal M}$) ≇ Aut ($${\cal N}$$).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  31
    Automorphisms of Saturated and Boundedly Saturated Models of Arithmetic.Ermek S. Nurkhaidarov & Erez Shochat - 2011 - Notre Dame Journal of Formal Logic 52 (3):315-329.
    We discuss automorphisms of saturated models of PA and boundedly saturated models of PA. We show that Smoryński's Lemma and Kaye's Theorem are not only true for countable recursively saturated models of PA but also true for all boundedly saturated models of PA with slight modifications.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  23
    Closed Normal Subgroups of the Automorphism Group of a Saturated Model of Peano Arithmetic.Ermek S. Nurkhaidarov & Erez Shochat - 2016 - Notre Dame Journal of Formal Logic 57 (1):127-139.
    In this paper we discuss automorphism groups of saturated models and boundedly saturated models of $\mathsf{PA}$. We show that there are saturated models of $\mathsf{PA}$ of the same cardinality with nonisomorphic automorphism groups. We then show that every saturated model of $\mathsf{PA}$ has short saturated elementary cuts with nonisomorphic automorphism groups.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The complexity of classification problems for models of arithmetic.Samuel Coskey & Roman Kossak - 2010 - Bulletin of Symbolic Logic 16 (3):345-358.
    We observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  32
    Generic cuts in models of arithmetic.Richard Kaye - 2008 - Mathematical Logic Quarterly 54 (2):129-144.
    We present some general results concerning the topological space of cuts of a countable model of arithmetic given by a particular indicator Y.The notion of “indicator” is de.ned in a novel way, without initially specifying what property is indicated and is used to de.ne a topological space of cuts of the model. Various familiar properties of cuts are investigated in this sense, and several results are given stating whether or not the set of cuts having the property is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  14.  74
    On interstices of countable arithmetically saturated models of Peano arithmetic.Nicholas Bamber & Henryk Kotlarski - 1997 - Mathematical Logic Quarterly 43 (4):525-540.
    We give some information about the action of Aut on M, where M is a countable arithmetically saturated model of Peano Arithmetic. We concentrate on analogues of moving gaps and covering gaps inside M.
    Direct download  
     
    Export citation  
     
    Bookmark   14 citations  
  15.  61
    Real closed fields and models of Peano arithmetic.P. D'Aquino, J. F. Knight & S. Starchenko - 2010 - Journal of Symbolic Logic 75 (1):1-11.
    Shepherdson [14] showed that for a discrete ordered ring I, I is a model of IOpen iff I is an integer part of a real closed ordered field. In this paper, we consider integer parts satisfying PA. We show that if a real closed ordered field R has an integer part I that is a nonstandard model of PA (or even IΣ₄), then R must be recursively saturated. In particular, the real closure of I, RC (I), is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  16.  16
    (1 other version)Automorphism Groups of Countable Arithmetically Saturated Models of Peano Arithmetic.James H. Schmerl - 2015 - Journal of Symbolic Logic 80 (4):1411-1434.
    If${\cal M},{\cal N}$are countable, arithmetically saturated models of Peano Arithmetic and${\rm{Aut}}\left( {\cal M} \right) \cong {\rm{Aut}}\left( {\cal N} \right)$, then the Turing-jumps of${\rm{Th}}\left( {\cal M} \right)$and${\rm{Th}}\left( {\cal N} \right)$are recursively equivalent.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  16
    Strongly maximal subgroups determined by elements in interstices.Teresa Bigorajska - 2003 - Mathematical Logic Quarterly 49 (1):101-108.
    Continuing the earlier research in [1] and [4] we work out a class of interstices in countable arithmetically saturated models of PA in which selective types are realized and a class of interstices in which 2-indiscernible types are realized.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  10
    Substructure lattices and almost minimal end extensions of models of Peano arithmetic.James H. Schmerl - 2004 - Mathematical Logic Quarterly 50 (6):533-539.
    This paper concerns intermediate structure lattices Lt, where [MATHEMATICAL SCRIPT CAPITAL N] is an almost minimal elementary end extension of the model ℳ of Peano Arithmetic. For the purposes of this abstract only, let us say that ℳ attains L if L ≅ Lt for some almost minimal elementary end extension of [MATHEMATICAL SCRIPT CAPITAL N]. If T is a completion of PA and L is a finite lattice, then: If some model of T attains L, then every (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  55
    On expandability of models of peano arithmetic to models of the alternative set theory.Athanassios Tzouvaras - 1992 - Journal of Symbolic Logic 57 (2):452-460.
    We give a sufficient condition for a countable model M of PA to be expandable to an ω-model of AST with absolute Ω-orderings. The condition is in terms of saturation schemes or, equivalently, in terms of the ability of the model to code sequences which have some kind of definition in (M, ω). We also show that a weaker scheme of saturation leads to the existence of wellorderings of the model with nice properties. Finally, we answer (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  20.  45
    Models of PT- with Internal Induction for Total Formulae.Cezary Cieslinski, Bartosz Wcisło & Mateusz Łełyk - 2017 - Review of Symbolic Logic 10 (1):187-202.
    We show that a typed compositional theory of positive truth with internal induction for total formulae (denoted by PT tot ) is not semantically conservative over Peano arithmetic. In addition, we observe that the class of models of PA expandable to models of PT tot contains every recursively saturated model of arithmetic. Our results point to a gap in the philosophical project of describing the use of the truth predicate in model-theoretic contexts.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  54
    Saturated models of peano arithmetic.J. F. Pabion - 1982 - Journal of Symbolic Logic 47 (3):625-637.
    We study reducts of Peano arithmetic for which conditions of saturation imply the corresponding conditions for the whole model. It is shown that very weak reducts (like pure order) have such a property for κ-saturation in every κ ≥ ω 1 . In contrast, other reducts do the job for ω and not for $\kappa > \omega_1$ . This solves negatively a conjecture of Chang.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  22.  30
    Automorphism Groups of Arithmetically Saturated Models.Ermek S. Nurkhaidarov - 2006 - Journal of Symbolic Logic 71 (1):203 - 216.
    In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that ifMis a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  23.  27
    The ω-like recursively saturated models of arithmetic.Roman Kossak - 1991 - Bulletin of the Section of Logic 20 (3/4):109-109.
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  46
    On two questions concerning the automorphism groups of countable recursively saturated models of PA.Roman Kossak & Nicholas Bamber - 1996 - Archive for Mathematical Logic 36 (1):73-79.
  25.  76
    Nonstandard characterizations of recursive saturation and resplendency.Stuart T. Smith - 1987 - Journal of Symbolic Logic 52 (3):842-863.
    We prove results about nonstandard formulas in models of Peano arithmetic which complement those of Kotlarski, Krajewski, and Lachlan in [KKL] and [L]. This enables us to characterize both recursive saturation and resplendency in terms of statements about nonstandard sentences. Specifically, a model M of PA is recursively saturated iff M is nonstandard and M-logic is consistent.M is resplendent iff M is nonstandard, M-logic is consistent, and every sentence φ which is consistent in M-logic is contained in a (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26.  21
    Elementary extensions of recursively saturated models of arithmetic.C. Smoryński - 1981 - Notre Dame Journal of Formal Logic 22 (3):193-203.
  27.  56
    Ω1-like recursively saturated models of Presburger's arithmetic.Victor Harnik - 1986 - Journal of Symbolic Logic 51 (2):421-429.
  28. Transplendent Models: Expansions Omitting a Type.Fredrik Engström & Richard W. Kaye - 2012 - Notre Dame Journal of Formal Logic 53 (3):413-428.
    We expand the notion of resplendency to theories of the kind T + p", where T is a fi rst-order theory and p" expresses that the type p is omitted. We investigate two di erent formulations and prove necessary and sucient conditions for countable recursively saturated models of PA. Some of the results in this paper can be found in one of the author's doctoral thesis [3].
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  29.  20
    Decoding in the automorphism group of a recursively saturated model of arithmetic.Ermek Nurkhaidarov - 2015 - Mathematical Logic Quarterly 61 (3):179-188.
    The main result of this paper partially answers a question raised in about the existence of countable just recursively saturated models of Peano Arithmetic with non‐isomorphic automorphism groups. We show the existence of infinitely many countable just recursively saturated models of Peano Arithmetic such that their automorphism groups are not topologically isomorphic. We also discuss maximal open subgroups of the automorphism group of a countable arithmetically saturated model of in a very good interstice.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  16
    The Structure of Models of Peano Arithmetic.Roman Kossak & James Schmerl - 2006 - Oxford, England: Clarendon Press.
    Aimed at graduate students, research logicians and mathematicians, this much-awaited text covers over 40 years of work on relative classification theory for nonstandard models of arithmetic. The book covers basic isomorphism invariants: families of type realized in a model, lattices of elementary substructures and automorphism groups.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  31.  27
    A note on initial segment constructions in recursively saturated models of arithmetic.C. Smoryński - 1982 - Notre Dame Journal of Formal Logic 23 (4):393-408.
  32.  28
    Indiscernibles and satisfaction classes in arithmetic.Ali Enayat - 2024 - Archive for Mathematical Logic 63 (5):655-677.
    We investigate the theory Peano Arithmetic with Indiscernibles ( \(\textrm{PAI}\) ). Models of \(\textrm{PAI}\) are of the form \(({\mathcal {M}},I)\), where \({\mathcal {M}}\) is a model of \(\textrm{PA}\), _I_ is an unbounded set of order indiscernibles over \({\mathcal {M}}\), and \(({\mathcal {M}},I)\) satisfies the extended induction scheme for formulae mentioning _I_. Our main results are Theorems A and B following. _Theorem A._ _Let_ \({\mathcal {M}}\) _be a nonstandard model of_ \(\textrm{PA}\) _ of any cardinality_. \(\mathcal {M }\) _has (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  22
    On closed elementary cuts in recursively saturated models of Peano arithmetic.Bożena Piekart - 1993 - Notre Dame Journal of Formal Logic 34 (2):223-230.
  34.  58
    Recursively saturated nonstandard models of arithmetic.C. Smoryński - 1981 - Journal of Symbolic Logic 46 (2):259-286.
  35.  20
    Automorphisms of Models of True Arithmetic: Subgroups which Extend to a Maximal Subgroup Uniquely.Henryk Kotlarski & Bożena Piekart - 1994 - Mathematical Logic Quarterly 40 (1):95-102.
    We show that if M is a countable recursively saturated model of True Arithmetic, then G = Aut has nonmaximal open subgroups with unique extension to a maximal subgroup of Aut.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  16
    Automorphisms of Models of True Arithmetic: More on Subgroups which Extend to a Maximal One Uniquely.Henryk Kotlarski & Bożena Piekart - 2000 - Mathematical Logic Quarterly 46 (1):111-120.
    Continuing the earlier research in [14] we give some more information about nonmaximal open subgroups of G = Aut with unique maximal extension, where ℳ is a countable recursively saturated model of True Arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark  
  37.  76
    Classical and Intuitionistic Models of Arithmetic.Kai F. Wehmeier - 1996 - Notre Dame Journal of Formal Logic 37 (3):452-461.
    Given a classical theory T, a Kripke model K for the language L of T is called T-normal or locally PA just in case the classical L-structure attached to each node of K is a classical model of T. Van Dalen, Mulder, Krabbe, and Visser showed that Kripke models of Heyting Arithmetic (HA) over finite frames are locally PA, and that Kripke models of HA over frames ordered like the natural numbers contain infinitely many PA-nodes. We show that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  38.  54
    Recursively saturated nonstandard models of arithmetic; addendum.C. Smoryński - 1982 - Journal of Symbolic Logic 47 (3):493-494.
  39.  23
    Interstitial and pseudo gaps in models of Peano Arithmetic.Ermek S. Nurkhaidarov - 2010 - Mathematical Logic Quarterly 56 (2):198-204.
    In this paper we study the automorphism groups of models of Peano Arithmetic. Kossak, Kotlarski, and Schmerl [9] shows that the stabilizer of an unbounded element a of a countable recursively saturated model of Peano Arithmetic M is a maximal subgroup of Aut if and only if the type of a is selective. We extend this result by showing that if M is a countable arithmetically saturated model of Peano Arithmetic, Ω ⊂ M is a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  33
    Automorphisms of models of arithmetic: a unified view.Ali Enayat - 2007 - Annals of Pure and Applied Logic 145 (1):16-36.
    We develop the method of iterated ultrapower representation to provide a unified and perspicuous approach for building automorphisms of countable recursively saturated models of Peano arithmetic . In particular, we use this method to prove Theorem A below, which confirms a long-standing conjecture of James Schmerl.Theorem AIf is a countable recursively saturated model of in which is a strong cut, then for any there is an automorphism j of such that the fixed point set of j is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  41.  25
    Illusory models of peano arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Symbolic Logic 81 (3):1163-1175.
    By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a modelMof PA. We say a modelMof PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane ifM⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane modelNof PA. We firstly show thatMis heterodox if and only if it is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  42.  16
    (1 other version)The Recursively Saturated Part of Models of Peano Arithmetic.Henryk Kotlarski - 1986 - Mathematical Logic Quarterly 32 (19‐24):365-370.
    Direct download  
     
    Export citation  
     
    Bookmark  
  43.  72
    (1 other version)Jon Barwise and John Schlipf. On recursively saturated models of arithmetic. Model theory and algebra, A memorial tribute to Abraham Robinson, edited by D. H. Saracino and V. B. Weispfenning, Lecture notes in mathematics, vol. 498, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 42–55. - Patrick Cegielski, Kenneth McAloon, and George Wilmers. Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 57–68. - Julia F. Knight. Theories whose resplendent models are homogeneous. Israel journal of mathematics, vol. 42 , pp. 151–161. - Julia Knight and Mark Nadel. Expansions of models and Turing degrees. The journal of symbolic logic, vol. 47 , pp. 58. [REVIEW]J. -P. Ressayre - 1987 - Journal of Symbolic Logic 52 (1):279-284.
  44.  45
    On the structure of kripke models of heyting arithmetic.Zoran Marković - 1993 - Mathematical Logic Quarterly 39 (1):531-538.
    Since in Heyting Arithmetic all atomic formulas are decidable, a Kripke model for HA may be regarded classically as a collection of classical structures for the language of arithmetic, partially ordered by the submodel relation. The obvious question is then: are these classical structures models of Peano Arithmetic ? And dually: if a collection of models of PA, partially ordered by the submodel relation, is regarded as a Kripke model, is it a model of HA? Some partial (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  45.  3
    Satisfaction Classes with Approximate Disjunctive Correctness.Ali Enayat - forthcoming - Review of Symbolic Logic:1-18.
    The seminal Krajewski–Kotlarski–Lachlan theorem (1981) states that every countable recursively saturated model of $\mathsf {PA}$ (Peano arithmetic) carries a full satisfaction class. This result implies that the compositional theory of truth over $\mathsf {PA}$ commonly known as $\mathsf {CT}^{-}[\mathsf {PA}]$ is conservative over $\mathsf {PA}$. In contrast, Pakhomov and Enayat (2019) showed that the addition of the so-called axiom of disjunctive correctness (that asserts that a finite disjunction is true iff one of its disjuncts is true) to $\mathsf (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46. Possible m-diagrams of models of arithmetic.Andrew Arana - 2005 - In Stephen Simpson (ed.), Reverse Mathematics 2001. Association for Symbolic Logic.
    In this paper I begin by extending two results of Solovay; the first characterizes the possible Turing degrees of models of True Arithmetic (TA), the complete first-order theory of the standard model of PA, while the second characterizes the possible Turing degrees of arbitrary completions of P. I extend these two results to characterize the possible Turing degrees of m-diagrams of models of TA and of arbitrary complete extensions of PA. I next give a construction showing that the conditions (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  47.  33
    Automorphisms of Models of True Arithmetic: Recognizing Some Basic Open Subgroups.Henryk Kotlarski & Richard Kaye - 1994 - Notre Dame Journal of Formal Logic 35 (1):1-14.
    Let M be a countable recursively saturated model of Th(), and let GAut(M), considered as a topological group. We examine connections between initial segments of M and subgroups of G. In particular, for each of the following classes of subgroups HG, we give characterizations of the class of terms of the topological group structure of H as a subgroup of G. (a) for some (b) for some (c) for some (d) for some (Here, M(a) denotes the smallest M (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  48.  27
    Recursively saturated $\omega_1$-like models of arithmetic.Roman Kossak - 1985 - Notre Dame Journal of Formal Logic 26 (4):413-422.
  49.  15
    Every Countable Model of Arithmetic or Set Theory has a Pointwise-Definable End Extension.Joel David Hamkins - forthcoming - Kriterion – Journal of Philosophy.
    According to the math tea argument, there must be real numbers that we cannot describe or define, because there are uncountably many real numbers, but only countably many definitions. And yet, the existence of pointwise-definable models of set theory, in which every individual is definable without parameters, challenges this conclusion. In this article, I introduce a flexible new method for constructing pointwise-definable models of arithmetic and set theory, showing furthermore that every countable model of Zermelo-Fraenkel ZF set theory and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  49
    Remarks on weak notions of saturation in models of peano arithmetic.Matt Kaufmann & James H. Schmerl - 1987 - Journal of Symbolic Logic 52 (1):129-148.
1 — 50 / 967