Results for 'Plane Euclidean geometry'

947 found
Order:
  1.  41
    The Simplest Axiom System for Plane Hyperbolic Geometry Revisited.Victor Pambuccian - 2011 - Studia Logica 97 (3):347 - 349.
    Using the axiom system provided by Carsten Augat in [1], it is shown that the only 6-variable statement among the axioms of the axiom system for plane hyperbolic geometry (in Tarski's language L B =), we had provided in [3], is superfluous. The resulting axiom system is the simplest possible one, in the sense that each axiom is a statement in prenex form about at most 5 points, and there is no axiom system consisting entirely of at most (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  31
    Ternary Operations as Primitive Notions for Constructive Plane Geometry VI.Victor Pambuccian - 1995 - Mathematical Logic Quarterly 41 (3):384-394.
    In this paper we provide quantifier-free, constructive axiomatizations for several fragments of plane Euclidean geometry over Euclidean fields, such that each axiom contains at most 4 variables. The languages in which they are expressed contain only at most ternary operations. In some precisely defined sense these axiomatizations are the simplest possible.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  52
    The simplest axiom system for plane hyperbolic geometry.Victor Pambuccian - 2004 - Studia Logica 77 (3):385 - 411.
    We provide a quantifier-free axiom system for plane hyperbolic geometry in a language containing only absolute geometrically meaningful ternary operations (in the sense that they have the same interpretation in Euclidean geometry as well). Each axiom contains at most 4 variables. It is known that there is no axiom system for plane hyperbolic consisting of only prenex 3-variable axioms. Changing one of the axioms, one obtains an axiom system for plane Euclidean geometry, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  4.  24
    Ternary operations as primitive notions for constructive plane geometry III.Victor Pambuccian - 1993 - Mathematical Logic Quarterly 39 (1):393-402.
    This paper continues the investigations begun in [6] and continued in [7] about quantifier-free axiomatizations of plane Euclidean geometry using ternary operations. We show that plane Euclidean geometry over Archimedean ordered Euclidean fields can be axiomatized using only two ternary operations if one allows axioms that are not first-order but universal Lw1,w sentences. The operations are: the transport of a segment on a halfline that starts at one of the endpoints of the given (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  14
    Ternary Operations as Primitive Notions for Constructive Plane Geometry V.Victor Pambuccian - 1994 - Mathematical Logic Quarterly 40 (4):455-477.
    In this paper we provide a quantifier-free, constructive axiomatization of metric-Euclidean and of rectangular planes . The languages in which the axiom systems are expressed contain three individual constants and two ternary operations. We also provide an axiom system in algorithmic logic for finite Euclidean planes, and for several minimal metric-Euclidean planes. The axiom systems proposed will be used in a sequel to this paper to provide ‘the simplest possible’ axiom systems for several fragments of plane (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  27
    Constructive Axiomatizations of Plane Absolute, Euclidean and Hyperbolic Geometry.Victor Pambuccian - 2001 - Mathematical Logic Quarterly 47 (1):129-136.
    In this paper we provide quantifier-free, constructive axiomatizations for 2-dimensional absolute, Euclidean, and hyperbolic geometry. The main novelty consists in the first-order languages in which the axiom systems are formulated.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  30
    Another Constructive Axiomatization of Euclidean Planes.Victor Pambuccian - 2000 - Mathematical Logic Quarterly 46 (1):45-48.
    H. Tietze has proved algebraically that the geometry of uniquely determined ruler and compass constructions coincides with the geometry of ruler and set square constructions. We provide a new proof of this result via new universal axiom systems for Euclidean planes of characteristic ≠ 2 in languages containing only operation symbols.
    Direct download  
     
    Export citation  
     
    Bookmark  
  8.  41
    Constructive geometry and the parallel postulate.Michael Beeson - 2016 - Bulletin of Symbolic Logic 22 (1):1-104.
    Euclidean geometry, as presented by Euclid, consists of straightedge-and-compass constructions and rigorous reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. This involves finding “uniform” constructions where normally a case distinction is used. For example, in finding a perpendicular to line L through point p, one usually uses two different constructions, “erecting” a perpendicular when p is on L, and “dropping” a perpendicular when p is not (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  30
    Ternary Operations as Primitive Notions for Constructive Plane Geometry IV.Victor Pambuccian - 1994 - Mathematical Logic Quarterly 40 (1):76-86.
    In this paper we provide a quantifier-free constructive axiomatization for Euclidean planes in a first-order language with only ternary operation symbols and three constant symbols . We also determine the algorithmic theories of some ‘naturally occurring’ plane geometries.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  27
    Geometry as an extension of the group theory.A. Prusińska & L. Szczerba - 2002 - Logic and Logical Philosophy 10:131.
    Klein’s Erlangen program contains the postulate to study thegroup of automorphisms instead of a structure itself. This postulate, takenliterally, sometimes means a substantial loss of information. For example, thegroup of automorphisms of the field of rational numbers is trivial. Howeverin the case of Euclidean plane geometry the situation is different. We shallprove that the plane Euclidean geometry is mutually interpretable with theelementary theory of the group of authomorphisms of its standard model.Thus both theories differ (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  24
    Affine Geometry and Relativity.Božidar Jovanović - 2023 - Foundations of Physics 53 (3):1-29.
    We present the basic concepts of space and time, the Galilean and pseudo-Euclidean geometry. We use an elementary geometric framework of affine spaces and groups of affine transformations to illustrate the natural relationship between classical mechanics and theory of relativity, which is quite often hidden, despite its fundamental importance. We have emphasized a passage from the group of Galilean motions to the group of Poincaré transformations of a plane. In particular, a 1-parametric family of natural deformations of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  39
    A common axiom set for classical and intuitionistic plane geometry.Melinda Lombard & Richard Vesley - 1998 - Annals of Pure and Applied Logic 95 (1-3):229-255.
    We describe a first order axiom set which yields the classical first order Euclidean geometry of Tarski when used with classical logic, and yields an intuitionistic Euclidean geometry when used with intuitionistic logic. The first order language has a single six place atomic predicate and no function symbols. The intuitionistic system has a computational interpretation in recursive function theory, that is, a realizability interpretation analogous to those given by Kleene for intuitionistic arithmetic and analysis. This interpretation (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  13.  53
    Royden H. L.. Remarks on primitive notions for elementary Euclidean and non-Euclidean plane geometry. The axiomatic method with special reference to geometry and physics, Proceedings of an International Symposium held at the University of California, Berkeley, December 26,1957-January 4, 1958, Studies in logic and the foundations of mathematics, North-Holland Publishing Company, Amsterdam 1959, pp. 86–96. [REVIEW]Lesław W. Szczerba - 1970 - Journal of Symbolic Logic 35 (3):473-474.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. Beyond Core Knowledge: Natural Geometry.Elizabeth Spelke, Sang Ah Lee & Véronique Izard - 2010 - Cognitive Science 34 (5):863-884.
    For many centuries, philosophers and scientists have pondered the origins and nature of human intuitions about the properties of points, lines, and figures on the Euclidean plane, with most hypothesizing that a system of Euclidean concepts either is innate or is assembled by general learning processes. Recent research from cognitive and developmental psychology, cognitive anthropology, animal cognition, and cognitive neuroscience suggests a different view. Knowledge of geometry may be founded on at least two distinct, evolutionarily ancient, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  15. The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by (...)
     
    Export citation  
     
    Bookmark   106 citations  
  16.  16
    David Hilbert and the foundations of the theory of plane area.Eduardo N. Giovannini - 2021 - Archive for History of Exact Sciences 75 (6):649-698.
    This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph Foundation of Geometry. On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  66
    Thomas Reid’s geometry of visibles and the parallel postulate.Giovanni B. Grandi - 2005 - Studies in History and Philosophy of Science Part A 36 (1):79-103.
    Thomas Reid (1710–1796) presented a two-dimensional geometry of the visual field in his Inquiry into the human mind (1764), whose axioms are different from those of Euclidean plane geometry. Reid’s ‘geometry of visibles’ is the same as the geometry of the surface of the sphere, described without reference to points and lines outside the surface itself. Interpreters of Reid seem to be divided in evaluating the significance of his geometry of visibles in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  18.  27
    From Magnitudes to Geometry and Back: De Zolt's Postulate.Eduardo N. Giovannini & Abel Lassalle-Casanave - 2022 - Theoria 88 (3):629-652.
    Theoria, Volume 88, Issue 3, Page 629-652, June 2022.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19.  63
    Absolute Selbstähnlichkeit in der euklidischen Geometrie. Zu Kants Erklärung der Möglichkeit der reinen Geometrie als einer synthetischen Erkenntnis a priori.Michael Wolff - 2009 - Kant Studien 100 (3):285-308.
    Kant's theory of space includes the idea that straight lines and planes can be defined in Euclidean geometry by a concept which nowadays has been revived in the field of fractal geometry: the concept of self-similarity. Absolute self-similarity of straight lines and planes distinguishes Euclidean space from any other geometrical space. Einstein missed this fact in his attempt to refute Kant's theory of space in his article ‘Geometrie und Erfahrung’. Following Hilbert and Schlick he took it (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  25
    The Epistemological Import of Euclidean Diagrams.Daniele Molinini - 2016 - Kairos 16 (1):124-141.
    In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may have in empirical sciences, more specifically in physics. I (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  27
    Conditional Logic is Complete for Convexity in the Plane.Johannes Marti - 2023 - Review of Symbolic Logic 16 (2):529-552.
    We prove completeness of preferential conditional logic with respect to convexity over finite sets of points in the Euclidean plane. A conditional is defined to be true in a finite set of points if all extreme points of the set interpreting the antecedent satisfy the consequent. Equivalently, a conditional is true if the antecedent is contained in the convex hull of the points that satisfy both the antecedent and consequent. Our result is then that every consistent formula without (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22. Euclidean Geometry is a Priori.Boris Culina - manuscript
    An argument is given that Euclidean geometry is a priori in the same way that numbers are a priori, the result of modeling, not the world, but our activities in the world.
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  45
    Beltrami's model and the independence of the parallel postulate.J. Scanlan Michael - 1988 - History and Philosophy of Logic 9 (1):13-34.
    E. Beltrami in 1868 did not intend to prove the consistency of non-euclidean plane geometry nor the independence of the euclidean parallel postulate. His approach would have been unsuccessful if so intended. J. Hoüel in 1870 described the relevance of Beltrami's work to the issue of the independence of the euclidean parallel postulate. Hoüel's method is different from the independence proofs using reinterpretation of terms deployed by Peano about 1890, chiefly in using a fixed interpretation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  59
    Reid's Direct Realism about Vision.Giovanni B. Grandi - 2006 - History of Philosophy Quarterly 23 (3):225 - 241.
    Thomas Reid presented a two-dimensional geometry of the visual field in his Inquiry into the Human Mind (1764). The axioms of this geometry are different from those of Euclidean plane geometry. The ‘geometry of visibles’ is the same as the geometry of the surface of the sphere, described without reference to points and lines outside the surface itself. In a recent article, James Van Cleve has argued that Reid can secure a non-Euclidean (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  25.  11
    Pre-Euclidean geometry and Aeginetan coin design: some further remarks.Gerhard Michael Ambrosi - 2012 - Archive for History of Exact Sciences 66 (5):557-583.
    Some ancient Greek coins from the island state of Aegina depict peculiar geometric designs. Hitherto they have been interpreted as anticipations of some Euclidean propositions. But this paper proposes geometrical constructions which establish connections to pre-Euclidean treatments of incommensurability. The earlier Aeginetan coin design from about 500 bc onwards appears as an attempt not only to deal with incommensurability but also to conceal it. It might be related to Plato’s dialogue Timaeus. The newer design from 404 bc onwards (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  26. How euclidean geometry has misled metaphysics.Graham Nerlich - 1991 - Journal of Philosophy 88 (4):169-189.
  27.  99
    Non-Euclidean geometry: Still some problems for Kant.Nicholas Griffin - 1990 - Studies in History and Philosophy of Science Part A 22 (4):661-663.
    A reply to Risjord's defense of the view that there is no conflict between non-Euclidean geometry and Kant's philosophy of geometry because, while the form of intuition restricts which systems of concepts may be accepted as a geometry, it does not do so uniquely ("Stud Hist Phil Sci, 21", 1990). I argue that under these circumstances it is difficult to sustain the synthetic "a priori" status of geometrical propositions. Two broad ways of attempting to do so (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  28. Non-Euclidean Geometry and Einstein’s General Relativity: Cassirer’s View in 1921.Francesca Biagioli - 2016 - In Space, Number, and Geometry From Helmholtz to Cassirer. Cham: Springer Verlag.
    No categories
     
    Export citation  
     
    Bookmark  
  29. Non-euclidean geometry and the Kantian a priori.F. C. S. Schiller - 1896 - Philosophical Review 5 (2):173-180.
  30.  75
    (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  31. Non-euclidean geometry and weierstrassian mathematics.Thomas Hawkins - 1983 - In Joseph Warren Dauben & Virginia Staudt Sexton (eds.), History and Philosophy of Science: Selected Papers : Monthly Meetings, New York, 1979-1981, Selection of Papers. New York Academy of Sciences.
  32.  31
    Constructive Axiomatization of Plane Hyperbolic Geometry.Victor Pambuccian - 2001 - Mathematical Logic Quarterly 47 (4):475-488.
    We provide a universal axiom system for plane hyperbolic geometry in a firstorder language with two sorts of individual variables, ‘points’ and ‘lines’ , containing three individual constants, A0, A1, A2, standing for three non-collinear points, two binary operation symbols, φ and ι, with φ = l to be interpreted as ‘[MATHEMATICAL SCRIPT SMALL L] is the line joining A and B’ , and ι = P to be interpreted as [MATHEMATICAL SCRIPT SMALL L]P is the point of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Flexible intuitions of Euclidean geometry in an Amazonian indigene group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian (...) map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  34.  50
    An Okapi Hypothesis: Non-Euclidean Geometry and the Professional Expert in American Mathematics.Jemma Lorenat - 2022 - Isis 113 (1):85-107.
    Open Court began publishingThe Monistin 1890 as a journal“devotedto the philosophy of science”that regularly included mathematics. The audiencewas understood to be“cultured people who have not a technical mathematicaltraining”but nevertheless“have a mathematical penchant.”With these constraints,the mathematical content varied from recreations to logical foundations, but every-one had something to say about non-Euclidean geometry, in debates that rangedfrom psychology to semantics. The focus in this essay is on the contested value ofmathematical expertise in legitimating what should be considered as mathematics.While some (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. Decision Problems in Euclidean Geometry.Harvey M. Friedman - unknown
    We show the algorithmic unsolvability of a number of decision procedures in ordinary two dimensional Euclidean geometry, involving lines and integer points. We also consider formulations involving integral domains of characteristic 0, and ordered rings. The main tool is the solution to Hilbert's Tenth Problem. The limited number of facts used from recursion theory are isolated at the beginning.
     
    Export citation  
     
    Bookmark  
  36. Non-Euclidean geometry and relative consistency proofs.Alan Hausman - 1976 - In Peter K. Machamer & Robert G. Turnbull (eds.), Motion and Time, Space and Matter. Ohio State University Press.
  37.  77
    Non-euclidean geometry and physics (1926).Albert Einstein - 2005 - Scientiae Studia 3 (4):677-681.
  38. Visual foundations of Euclidean Geometry.Véronique Izard, Pierre Pica & Elizabeth Spelke - 2022 - Cognitive Psychology 136 (August):101494.
    Geometry defines entities that can be physically realized in space, and our knowledge of abstract geometry may therefore stem from our representations of the physical world. Here, we focus on Euclidean geometry, the geometry historically regarded as “natural”. We examine whether humans possess representations describing visual forms in the same way as Euclidean geometry – i.e., in terms of their shape and size. One hundred and twelve participants from the U.S. (age 3–34 years), (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Non-Euclidean geometry and revolutions in mathematics.Yuxin Zheng - 1992 - In Donald Gillies (ed.), Revolutions in mathematics. New York: Oxford University Press. pp. 169--182.
     
    Export citation  
     
    Bookmark   1 citation  
  40.  10
    Frege on the Euclidean Geometry. 박준용 - 2021 - Journal of the New Korean Philosophical Association 105:123-161.
    나는 이 글에서 기하학에 관한 프레게의 견해를 재구성한다. 이를 바탕으로 다음 세 논제를 입증하고자 한다. (1) 프레게의 수학철학은 산수의 논리학으로의 환원과 더불어 비직관적 기하학 이론의 유클리드 기하학으로의 환원 두 종류의 인식론적 환원 프로그램을 포함한다. (2) 유클리드 이론으로의 환원 방식은 두 종류가 있는데, 하나는 사영기하학 및 공간량 이론의 경우처럼 그 이론의 인식적 본성을 보존하기 위해 논리적 추상화 원리에 의존하는 환원이다. 그리고 (3) 다른 하나의 환원 방안은 이론들 사이의 구조적 동형성에 근거하는 환원으로서, 「기하학의 기초 II」(1906)에서 그가 제안한 참인 사고 내용들 사이의 상호 (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41. On the Compatibility between Euclidean Geometry and Hume's Denial of Infinite Divisibility.Emil Badici - 2008 - Hume Studies 34 (2):231-244.
    It has been argued that Hume's denial of infinite divisibility entails the falsity of most of the familiar theorems of Euclidean geometry, including the Pythagorean theorem and the bisection theorem. I argue that Hume's thesis that there are indivisibles is not incompatible with the Pythagorean theorem and other central theorems of Euclidean geometry, but only with those theorems that deal with matters of minuteness. The key to understanding Hume's view of geometry is the distinction he (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  42. REVIEW OF 1988. Saccheri, G. Euclides Vindicatus (1733), edited and translated by G. B. Halsted, 2nd ed. (1986), in Mathematical Reviews MR0862448. 88j:01013.John Corcoran - 1988 - MATHEMATICAL REVIEWS 88 (J):88j:01013.
    Girolamo Saccheri (1667--1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. He earned a permanent place in the history of mathematics by discovering and rigorously deducing an elaborate chain of consequences of an axiom-set for what is now known as hyperbolic (or Lobachevskian) plane geometry. Reviewer's remarks: (1) On two pages of this book Saccheri refers to his previous and equally original book Logica demonstrativa (Turin, 1697) to which 14 of the 16 pages of the editor's "Introduction" (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  43. Kant and non-euclidean geometry.Amit Hagar - 2008 - Kant Studien 99 (1):80-98.
    It is occasionally claimed that the important work of philosophers, physicists, and mathematicians in the nineteenth and in the early twentieth centuries made Kant’s critical philosophy of geometry look somewhat unattractive. Indeed, from the wider perspective of the discovery of non-Euclidean geometries, the replacement of Newtonian physics with Einstein’s theories of relativity, and the rise of quantificational logic, Kant’s philosophy seems “quaint at best and silly at worst”.1 While there is no doubt that Kant’s transcendental project involves his (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44. ARISTOTELIAN LOGIC AND EUCLIDEAN GEOMETRY.John Corcoran - 2014 - Bulletin of Symbolic Logic 20 (1):131-2.
    John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows from (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  45. NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited).Florentin Smarandache - 2021 - Neutrosophic Sets and Systems 46 (1):456-477.
    In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.) (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  42
    Is euclidean geometry analytic?Robert French - 1986 - Philosophical Studies 49 (2):213 - 217.
  47.  6
    On the Preeminence of Euclidean Geometry: Nash’s Embedding Theorems.Mircea Dumitru & Liviu Ornea - forthcoming - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie:1-11.
    According to Kant’s philosophy of geometry, Euclidean geometry is synthetic _a priori_. The advent of non-Euclidean geometries proved this position at least problematic, if not obsolete. However, based on Nash’s embedding theorems we show that a weaker notion of _preeminence_ supports the view that Euclidean geometry, even though not strictly _a priori_, enjoys a more fundamental status than non-Euclidean geometries.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48. After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics.Janet Folina - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The mathematical developments of the 19th century seemed to undermine Kant’s philosophy. Non-Euclidean geometries challenged Kant’s view that there is a spatial intuition rich enough to yield the truth of Euclidean geometry. Similarly, advancements in algebra challenged the view that temporal intuition provides a foundation for both it and arithmetic. Mathematics seemed increasingly detached from experience as well as its form; moreover, with advances in symbolic logic, mathematical inference also seemed independent of intuition. This paper considers various (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  49. An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles.Boris Čulina - 2018 - Axiomathes 28 (2):155-180.
    In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us, all directions are the same to us and all units of length we use to create geometric figures are the same to us. On the other hand, through the process of algebraic simplification, this system of axioms directly provides (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50. (1 other version)Kant's Views on Non-Euclidean Geometry.Michael Cuffaro - 2012 - Proceedings of the Canadian Society for History and Philosophy of Mathematics 25:42-54.
    Kant's arguments for the synthetic a priori status of geometry are generally taken to have been refuted by the development of non-Euclidean geometries. Recently, however, some philosophers have argued that, on the contrary, the development of non-Euclidean geometry has confirmed Kant's views, for since a demonstration of the consistency of non-Euclidean geometry depends on a demonstration of its equi-consistency with Euclidean geometry, one need only show that the axioms of Euclidean (...) have 'intuitive content' in order to show that both Euclidean and non-Euclidean geometry are bodies of synthetic a priori truths. Michael Friedman has argued that this defence presumes a polyadic conception of logic that was foreign to Kant. According to Friedman, Kant held that geometrical reasoning itself relies essentially on intuition, and that this precludes the very possibility of non-Euclidean geometry. While Friedman's characterization of Kant's views on geometrical reasoning is correct, I argue that Friedman's conclusion that non-Euclidean geometries are logically impossible for Kant is not. I argue that Kant is best understood as a proto-constructivist and that modern constructive axiomatizations (unlike Hilbert-style axiomatizations) of both Euclidean and non-Euclidean geometry capture Kant's views on the essentially constructive nature of geometrical reasoning well. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 947