Results for 'Hilbert and Natural-Deduction proof systems for Modal Logics'

972 found
Order:
  1.  95
    Encoding modal logics in logical frameworks.Arnon Avron, Furio Honsell, Marino Miculan & Cristian Paravano - 1998 - Studia Logica 60 (1):161-208.
    We present and discuss various formalizations of Modal Logics in Logical Frameworks based on Type Theories. We consider both Hilbert- and Natural Deduction-style proof systems for representing both truth (local) and validity (global) consequence relations for various Modal Logics. We introduce several techniques for encoding the structural peculiarities of necessitation rules, in the typed -calculus metalanguage of the Logical Frameworks. These formalizations yield readily proof-editors for Modal Logics when (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Does the deduction theorem fail for modal logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  3.  22
    Cut-free Sequent Calculus and Natural Deduction for the Tetravalent Modal Logic.Martín Figallo - 2021 - Studia Logica 109 (6):1347-1373.
    The tetravalent modal logic is one of the two logics defined by Font and Rius :481–518, 2000) in connection with Monteiro’s tetravalent modal algebras. These logics are expansions of the well-known Belnap–Dunn’s four-valued logic that combine a many-valued character with a modal character. In fact, $${\mathcal {TML}}$$ TML is the logic that preserves degrees of truth with respect to tetravalent modal algebras. As Font and Rius observed, the connection between the logic $${\mathcal {TML}}$$ TML (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  56
    Natural Deduction for Modal Logic of Judgment Aggregation.Tin Perkov - 2016 - Journal of Logic, Language and Information 25 (3-4):335-354.
    We can formalize judgments as logical formulas. Judgment aggregation deals with judgments of several agents, which need to be aggregated to a collective judgment. There are several logical formalizations of judgment aggregation. This paper focuses on a modal formalization which nicely expresses classical properties of judgment aggregation rules and famous results of social choice theory, like Arrow’s impossibility theorem. A natural deduction system for modal logic of judgment aggregation is presented in this paper. The system is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  27
    Natural Deduction, Hybrid Systems and Modal Logics.Andrzej Indrzejczak - 2010 - Dordrecht, Netherland: Springer.
    This book provides a detailed exposition of one of the most practical and popular methods of proving theorems in logic, called Natural Deduction. It is presented both historically and systematically. Also some combinations with other known proof methods are explored. The initial part of the book deals with Classical Logic, whereas the rest is concerned with systems for several forms of Modal Logics, one of the most important branches of modern logic, which has wide (...)
  6. Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  7.  18
    A Natural Deduction Calculus for S4.2.Simone Martini, Andrea Masini & Margherita Zorzi - 2024 - Notre Dame Journal of Formal Logic 65 (2):127-150.
    We propose a natural deduction calculus for the modal logic S4.2. The system is designed to match as much as possible the structure and the properties of the standard system of natural deduction for first-order classical logic, exploiting the formal analogy between modalities and quantifiers. The system is proved sound and complete with respect to (w.r.t.) the standard Hilbert-style formulation of S4.2. Normalization and its consequences are obtained in a natural way, with proofs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8. Natural Deduction for Modal Logic with a Backtracking Operator.Jonathan Payne - 2015 - Journal of Philosophical Logic 44 (3):237-258.
    Harold Hodes in [1] introduces an extension of first-order modal logic featuring a backtracking operator, and provides a possible worlds semantics, according to which the operator is a kind of device for ‘world travel’; he does not provide a proof theory. In this paper, I provide a natural deduction system for modal logic featuring this operator, and argue that the system can be motivated in terms of a reading of the backtracking operator whereby it serves (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  48
    Axiomatic and dual systems for constructive necessity, a formally verified equivalence.Lourdes del Carmen González-Huesca, Favio E. Miranda-Perea & P. Selene Linares-Arévalo - 2019 - Journal of Applied Non-Classical Logics 29 (3):255-287.
    We present a proof of the equivalence between two deductive systems for constructive necessity, namely an axiomatic characterisation inspired by Hakli and Negri's system of derivations from assumptions for modal logic , a Hilbert-style formalism designed to ensure the validity of the deduction theorem, and the judgmental reconstruction given by Pfenning and Davies by means of a natural deduction approach that makes a distinction between valid and true formulae, constructively. Both systems and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  22
    A Natural Deduction System for Sentential Modal Logic.Howard J. Sobel - 1979 - Philosophy Research Archives 5:611-622.
    The sentential calculus SC of Kalish and Montague is extended to modal sentences. Rules of inference and a derivation procedure are added. The resultant natural deduction system SMC is like a system for S4 due to Fitch, but SMC is for S5 and the restriction on necessity derivation concerns.terminations of such derivations whereas the restriction on strict subordinate proof in Fitch's system concerns the line-by-line development of such proofs. An axiomatic system AxMC for S5 founded on (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  73
    Kurt gödel’s first steps in logic: Formal proofs in arithmetic and set theory through a system of natural deduction.Jan von Plato - 2018 - Bulletin of Symbolic Logic 24 (3):319-335.
    What seem to be Kurt Gödel’s first notes on logic, an exercise notebook of 84 pages, contains formal proofs in higher-order arithmetic and set theory. The choice of these topics is clearly suggested by their inclusion in Hilbert and Ackermann’s logic book of 1928, the Grundzüge der theoretischen Logik. Such proofs are notoriously hard to construct within axiomatic logic. Gödel takes without further ado into use a linear system of natural deduction for the full language of higher-order (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  43
    Propositional quantifiers in labelled natural deduction for normal modal logic.Matteo Pascucci - 2019 - Logic Journal of the IGPL 27 (6):865-894.
    This article concerns the treatment of propositional quantification in a framework of labelled natural deduction for modal logic developed by Basin, Matthews and Viganò. We provide a detailed analysis of a basic calculus that can be used for a proof-theoretic rendering of minimal normal multimodal systems with quantification over stable domains of propositions. Furthermore, we consider variations of the basic calculus obtained via relational theories and domain theories allowing for quantification over possibly unstable domains of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  34
    Natural deduction calculi for classical and intuitionistic S5.S. Guerrini, A. Masini & M. Zorzi - 2023 - Journal of Applied Non-Classical Logics 33 (2):165-205.
    1. It is a fact that developing a good proof theory for modal logics is a difficult task. The problem is not in having deductive systems. In fact, all the main modal logics enjoy an axiomatic prese...
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Proofnets for S5: sequents and circuits for modal logic.Greg Restall - 2007 - In C. Dimitracopoulos, L. Newelski & D. Normann (eds.), Logic Colloquium 2005: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005. Cambridge: Cambridge University Press. pp. 151-172.
    In this paper I introduce a sequent system for the propositional modal logic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the modal vocabulary—is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  15.  41
    Proof systems for various fde-based modal logics.Sergey Drobyshevich & Heinrich Wansing - 2020 - Review of Symbolic Logic 13 (4):720-747.
    We present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing and Odintsov & Wansing, as well as the modal logic KN4 with strong implication introduced in Goble. In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Natural Deduction: The Logical Basis of Axiom Systems[REVIEW]D. J. P. - 1963 - Review of Metaphysics 17 (1):141-142.
    Here is a deft and new introduction to Gentzen proof techniques in axiom systems and to the analysis of formal axiom systems; in short, axiomatics inside and out. Treating of deduction in propositional and predicate logic, metatheoretical problems about both set theory and its paradoxes, the book is flexibly structured for selective use as a text. Yet the discussion is unified and motivated by the concept of the axiomatic system--the history of its use and analysis, and (...)
     
    Export citation  
     
    Bookmark  
  17.  16
    Analytic Non-Labelled Proof-Systems for Hybrid Logic: Overview and a couple of striking facts.Torben Braüner - 2022 - Bulletin of the Section of Logic 51 (2):143-162.
    This paper is about non-labelled proof-systems for hybrid logic, that is, proofsystems where arbitrary formulas can occur, not just satisfaction statements. We give an overview of such proof-systems, focusing on analytic systems: Natural deduction systems, Gentzen sequent systems and tableau systems. We point out major results and we discuss a couple of striking facts, in particular that nonlabelled hybrid-logical natural deduction systems are analytic, but this is not (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  86
    Natural deduction for non-classical logics.David Basin, Seán Matthews & Luca Viganò - 1998 - Studia Logica 60 (1):119-160.
    We present a framework for machine implementation of families of non-classical logics with Kripke-style semantics. We decompose a logic into two interacting parts, each a natural deduction system: a base logic of labelled formulae, and a theory of labels characterizing the properties of the Kripke models. By appropriate combinations we capture both partial and complete fragments of large families of non-classical logics such as modal, relevance, and intuitionistic logics. Our approach is modular and supports (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  19.  32
    Normal Proofs and Tableaux for the Font-Rius Tetravalent Modal Logic.Marcelo E. Coniglio & Martin Figallo - forthcoming - Logic and Logical Philosophy:1-33.
    Tetravalent modal logic (TML) was introduced by Font and Rius in 2000. It is an expansion of the Belnap-Dunn four-valued logic FOUR, a logical system that is well-known for the many applications found in several fields. Besides, TML is the logic that preserves degrees of truth with respect to Monteiro’s tetravalent modal algebras. Among other things, Font and Rius showed that TML has a strongly adequate sequent system, but unfortunately this system does not enjoy the cut-elimination property. However, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. A survey of natural deduction systems for modal logics.Andrzej Indrzejczak - 1999 - Logica Trianguli 3:55-84.
    The paper contains an exposition of standard ND-formalizations for modal logics. For the sake of simplicity, it is limited to propositional monomodal logics because focus is on methods not on logics. Some of the discussed approaches, however, may be easily extended to first order modal logics of different sorts or to multimodal logics . Natural Deduction is understood in the strict sense, explained below; neither Gentzen Sequent Calculus, nor Tableau Systems (...)
     
    Export citation  
     
    Bookmark   3 citations  
  21. Logical consequence in modal logic II: Some semantic systems for S4.George Weaver - 1974 - Notre Dame Journal of Formal Logic 15:370.
    ABSTRACT: This 1974 paper builds on our 1969 paper (Corcoran-Weaver [2]). Here we present three (modal, sentential) logics which may be thought of as partial systematizations of the semantic and deductive properties of a sentence operator which expresses certain kinds of necessity. The logical truths [sc. tautologies] of these three logics coincide with one another and with those of standard formalizations of Lewis's S5. These logics, when regarded as logistic systems (cf. Corcoran [1], p. 154), (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  70
    A double deduction system for quantum logic based on natural deduction.Yannis Delmas-Rigoutsos - 1997 - Journal of Philosophical Logic 26 (1):57-67.
    The author presents a deduction system for Quantum Logic. This system is a combination of a natural deduction system and rules based on the relation of compatibility. This relation is the logical correspondant of the commutativity of observables in Quantum Mechanics or perpendicularity in Hilbert spaces. Contrary to the system proposed by Gibbins and Cutland, the natural deduction part of the system is pure: no algebraic artefact is added. The rules of the system are (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  23. One-step Modal Logics, Intuitionistic and Classical, Part 1.Harold T. Hodes - 2021 - Journal of Philosophical Logic 50 (5):837-872.
    This paper and its sequel “look under the hood” of the usual sorts of proof-theoretic systems for certain well-known intuitionistic and classical propositional modal logics. Section 1 is preliminary. Of most importance: a marked formula will be the result of prefixing a formula in a propositional modal language with a step-marker, for this paper either 0 or 1. Think of 1 as indicating the taking of “one step away from 0.” Deductions will be constructed using (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  59
    Natural Deduction Systems for Intuitionistic Logic with Identity.Szymon Chlebowski, Marta Gawek & Agata Tomczyk - 2022 - Studia Logica 110 (6):1381-1415.
    The aim of the paper is to present two natural deduction systems for Intuitionistic Sentential Calculus with Identity ( ISCI ); a syntactically motivated \(\mathsf {ND}^1_{\mathsf {ISCI}}\) and a semantically motivated \(\mathsf {ND}^2_{\mathsf {ISCI}}\). The formulation of \(\mathsf {ND}^1_{\mathsf {ISCI}}\) is based on the axiomatic formulation of ISCI. Its rules cannot be straightforwardly classified as introduction or elimination rules; ISCI -specific rules are based on axioms characterizing the identity connective. The system does not enjoy the standard subformula (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  41
    Why does the proof-theory of hybrid logic work so well?Torben Braüner - 2007 - Journal of Applied Non-Classical Logics 17 (4):521-543.
    This is primarily a conceptual paper. The goal of the paper is to put into perspective the proof-theory of hybrid logic and in particular, try to give an answer to the following question: Why does the proof-theory of hybrid logic work so well compared to the proof-theory of ordinary modal logic?Roughly, there are two different kinds of proof systems for modal logic: Systems where the formulas involved in the rules are formulas of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  78
    Relational proof system for relevant logics.Ewa Orlowska - 1992 - Journal of Symbolic Logic 57 (4):1425-1440.
    A method is presented for constructing natural deduction-style systems for propositional relevant logics. The method consists in first translating formulas of relevant logics into ternary relations, and then defining deduction rules for a corresponding logic of ternary relations. Proof systems of that form are given for various relevant logics. A class of algebras of ternary relations is introduced that provides a relation-algebraic semantics for relevant logics.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  27.  19
    Natural Deduction System in Paraconsistent Setting: Proof Search for PCont.Vasilyi Shangin & Alexander Bolotov - 2012 - Journal of Intelligent Systems 21 (1):1-24.
    . This paper continues a systematic approach to build natural deduction calculi and corresponding proof procedures for non-classical logics. Our attention is now paid to the framework of paraconsistent logics. These logics are used, in particular, for reasoning about systems where paradoxes do not lead to the `deductive explosion', i.e., where formulae of the type `A follows from false', for any A, are not valid. We formulate the natural deduction system for (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  28.  63
    Label-free natural deduction systems for intuitionistic and classical modal logics.Didier Galmiche & Yakoub Salhi - 2010 - Journal of Applied Non-Classical Logics 20 (4):373-421.
    In this paper we study natural deduction for the intuitionistic and classical (normal) modal logics obtained from the combinations of the axioms T, B, 4 and 5. In this context we introduce a new multi-contextual structure, called T-sequent, that allows to design simple labelfree natural deduction systems for these logics. After proving that they are sound and complete we show that they satisfy the normalization property and consequently the subformula property in the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  29.  72
    Two natural deduction systems for hybrid logic: A comparison. [REVIEW]Torben Braüner - 2004 - Journal of Logic, Language and Information 13 (1):1-23.
    In this paper two different natural deduction systems forhybrid logic are compared and contrasted.One of the systems was originally given by the author of the presentpaper whereasthe other system under consideration is a modifiedversion of a natural deductionsystem given by Jerry Seligman.We give translations in both directions between the systems,and moreover, we devise a set of reduction rules forthe latter system bytranslation of already known reduction rules for the former system.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  30. A fundamental non-classical logic.Wesley Holliday - 2023 - Logics 1 (1):36-79.
    We give a proof-theoretic as well as a semantic characterization of a logic in the signature with conjunction, disjunction, negation, and the universal and existential quantifiers that we suggest has a certain fundamental status. We present a Fitch-style natural deduction system for the logic that contains only the introduction and elimination rules for the logical constants. From this starting point, if one adds the rule that Fitch called Reiteration, one obtains a proof system for intuitionistic logic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Proof-Theoretic Semantics, a Problem with Negation and Prospects for Modality.Nils Kürbis - 2015 - Journal of Philosophical Logic 44 (6):713-727.
    This paper discusses proof-theoretic semantics, the project of specifying the meanings of the logical constants in terms of rules of inference governing them. I concentrate on Michael Dummett’s and Dag Prawitz’ philosophical motivations and give precise characterisations of the crucial notions of harmony and stability, placed in the context of proving normalisation results in systems of natural deduction. I point out a problem for defining the meaning of negation in this framework and prospects for an account (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  32.  71
    Translations Between Gentzen–Prawitz and Jaśkowski–Fitch Natural Deduction Proofs.Shawn Standefer - 2019 - Studia Logica 107 (6):1103-1134.
    Two common forms of natural deduction proof systems are found in the Gentzen–Prawitz and Jaśkowski–Fitch systems. In this paper, I provide translations between proofs in these systems, pointing out the ways in which the translations highlight the structural rules implicit in the systems. These translations work for classical, intuitionistic, and minimal logic. I then provide translations for classical S4 proofs.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  4
    Axiomatizing modal inclusion logic and its variants.Aleksi Anttila, Matilda Häggblom & Fan Yang - forthcoming - Archive for Mathematical Logic:1-39.
    We provide a complete axiomatization of modal inclusion logic—team-based modal logic extended with inclusion atoms. We review and refine an expressive completeness and normal form theorem for the logic, define a natural deduction proof system, and use the normal form to prove completeness of the axiomatization. Complete axiomatizations are also provided for two other extensions of modal logic with the same expressive power as modal inclusion logic: one augmented with a might operator and (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  43
    Labelled modal logics: Quantifiers. [REVIEW]David Basin, Seán Matthews & Luca Viganò - 1998 - Journal of Logic, Language and Information 7 (3):237-263.
    In previous work we gave an approach, based on labelled natural deduction, for formalizing proof systems for a large class of propositional modal logics that includes K, D, T, B, S4, S4.2, KD45, and S5. Here we extend this approach to quantified modal logics, providing formalizations for logics with varying, increasing, decreasing, or constant domains. The result is modular with respect to both properties of the accessibility relation in the Kripke frame (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  35.  29
    Natural Deduction Bottom Up.Ernst Zimmermann - 2021 - Journal of Logic, Language and Information 30 (3):601-631.
    The paper introduces a new type of rules into Natural Deduction, elimination rules by composition. Elimination rules by composition replace usual elimination rules in the style of disjunction elimination and give a more direct treatment of additive disjunction, multiplicative conjunction, existence quantifier and possibility modality. Elimination rules by composition have an enormous impact on proof-structures of deductions: they do not produce segments, deduction trees remain binary branching, there is no vacuous discharge, there is only few need (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  34
    Proof theory for heterogeneous logic combining formulas and diagrams: proof normalization.Ryo Takemura - 2021 - Archive for Mathematical Logic 60 (7):783-813.
    We extend natural deduction for first-order logic (FOL) by introducing diagrams as components of formal proofs. From the viewpoint of FOL, we regard a diagram as a deductively closed conjunction of certain FOL formulas. On the basis of this observation, we first investigate basic heterogeneous logic (HL) wherein heterogeneous inference rules are defined in the styles of conjunction introduction and elimination rules of FOL. By examining what is a detour in our heterogeneous proofs, we discuss that an elimination-introduction (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  45
    Natural Deduction Based upon Strict Implication for Normal Modal Logics.Claudio Cerrato - 1994 - Notre Dame Journal of Formal Logic 35 (4):471-495.
    We present systems of Natural Deduction based on Strict Implication for the main normal modal logics between K and S5. In this work we consider Strict Implication as the main modal operator, and establish a natural correspondence between Strict Implication and strict subproofs.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Gentzen's proof systems: byproducts in a work of genius.Jan von Plato - 2012 - Bulletin of Symbolic Logic 18 (3):313-367.
    Gentzen's systems of natural deduction and sequent calculus were byproducts in his program of proving the consistency of arithmetic and analysis. It is suggested that the central component in his results on logical calculi was the use of a tree form for derivations. It allows the composition of derivations and the permutation of the order of application of rules, with a full control over the structure of derivations as a result. Recently found documents shed new light on (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  39.  42
    Substitution Frege and extended Frege proof systems in non-classical logics.Emil Jeřábek - 2009 - Annals of Pure and Applied Logic 159 (1-2):1-48.
    We investigate the substitution Frege () proof system and its relationship to extended Frege () in the context of modal and superintuitionistic propositional logics. We show that is p-equivalent to tree-like , and we develop a “normal form” for -proofs. We establish connections between for a logic L, and for certain bimodal expansions of L.We then turn attention to specific families of modal and si logics. We prove p-equivalence of and for all extensions of , (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  40.  43
    Proof theory of modal logic.Heinrich Wansing (ed.) - 1996 - Boston: Kluwer Academic Publishers.
    Proof Theory of Modal Logic is devoted to a thorough study of proof systems for modal logics, that is, logics of necessity, possibility, knowledge, belief, time, computations etc. It contains many new technical results and presentations of novel proof procedures. The volume is of immense importance for the interdisciplinary fields of logic, knowledge representation, and automated deduction.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  41.  62
    Proof Theory for Functional Modal Logic.Shawn Standefer - 2018 - Studia Logica 106 (1):49-84.
    We present some proof-theoretic results for the normal modal logic whose characteristic axiom is \. We present a sequent system for this logic and a hypersequent system for its first-order form and show that these are equivalent to Hilbert-style axiomatizations. We show that the question of validity for these logics reduces to that of classical tautologyhood and first-order logical truth, respectively. We close by proving equivalences with a Fitch-style proof system for revision theory.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  42.  64
    Rasiowa-Sikorski proof system for the non-Fregean sentential logic SCI.Joanna Golinska-Pilarek - 2007 - Journal of Applied Non-Classical Logics 17 (4):509–517.
    The non-Fregean logic SCI is obtained from the classical sentential calculus by adding a new identity connective = and axioms which say ?a = ß' means ?a is identical to ß'. We present complete and sound proof system for SCI in the style of Rasiowa-Sikorski. It provides a natural deduction-style method of reasoning for the non-Fregean sentential logic SCI.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  43.  24
    Translations between linear and tree natural deduction systems for relevant logics.Shawn Standefer - 2021 - Review of Symbolic Logic 14 (2):285 - 306.
    Anderson and Belnap presented indexed Fitch-style natural deduction systems for the relevant logics R, E, and T. This work was extended by Brady to cover a range of relevant logics. In this paper I present indexed tree natural deduction systems for the Anderson–Belnap–Brady systems and show how to translate proofs in one format into proofs in the other, which establishes the adequacy of the tree systems.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  51
    Proof-Theoretic Functional Completeness for the Hybrid Logics of Everywhere and Elsewhere.Torben Braüner - 2005 - Studia Logica 81 (2):191-226.
    A hybrid logic is obtained by adding to an ordinary modal logic further expressive power in the form of a second sort of propositional symbols called nominals and by adding so-called satisfaction operators. In this paper we consider hybridized versions of S5 (“the logic of everywhere”) and the modal logic of inequality (“the logic of elsewhere”). We give natural deduction systems for the logics and we prove functional completeness results.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  43
    An Introduction to Modal Logic. [REVIEW]H. K. R. - 1970 - Review of Metaphysics 23 (4):739-740.
    A comprehensive introduction to modal logic is long overdue and this one has many virtues. It is clearly written and should be accessible to any student who has at least one semester of basic logic and is willing to read carefully and think abstractly. The first part, on modal propositional logic, begins with a summary account of classical propositional logic, the axiomatization of Principia Mathematica being the basis for the development of modal logics throughout the book. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  46. Natural Deduction: A Proof-Theoretical Study. [REVIEW]J. M. P. - 1966 - Review of Metaphysics 19 (3):596-596.
    We have here a systematic examination of systems of logic cast in "natural deduction" form, in the widest sense of that word. Naturally enough, the author begins with Gentzen-style systems, moves by means of the inversion principle in int-elim logics to deductions of classical and intuitionistic logic which have a canonical "normal form"; more briefly, but always with clarity, Prawitz examines natural deduction for second-order and modal logics, and also systems (...)
     
    Export citation  
     
    Bookmark  
  47.  90
    Natural deduction for first-order hybrid logic.Torben BraÜner - 2005 - Journal of Logic, Language and Information 14 (2):173-198.
    This is a companion paper to Braüner where a natural deduction system for propositional hybrid logic is given. In the present paper we generalize the system to the first-order case. Our natural deduction system for first-order hybrid logic can be extended with additional inference rules corresponding to conditions on the accessibility relations and the quantifier domains expressed by so-called geometric theories. We prove soundness and completeness and we prove a normalisation theorem. Moreover, we give an axiom (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  48.  73
    Normal Proofs, Cut Free Derivations and Structural Rules.Greg Restall - 2014 - Studia Logica 102 (6):1143-1166.
    Different natural deduction proof systems for intuitionistic and classical logic —and related logical systems—differ in fundamental properties while sharing significant family resemblances. These differences become quite stark when it comes to the structural rules of contraction and weakening. In this paper, I show how Gentzen and Jaśkowski’s natural deduction systems differ in fine structure. I also motivate directed proof nets as another natural deduction system which shares some of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  49. Diagrams and Natural Deduction: Theory and Pedagogy of Hyperproof.Ruth Eberle - 1995 - Dissertation, Indiana University
    The logical system Hyperproof and the computer implementation of it--both created by Jon Barwise and John Etchemendy--present a radical new approach to modeling and teaching about reasoning. Hyperproof is a heterogeneous proof system that uses both sentences and diagrams as steps in proofs. This dissertation addresses important logical, philosophical, and pedagogical issues that Hyperproof raises. We formalize the syntax and semantics of Hyperproof, show that the major inference rules are valid, and give completeness results for four subsystems of Hyperproof. (...)
     
    Export citation  
     
    Bookmark  
  50.  33
    A Hilbert-Style Axiomatisation for Equational Hybrid Logic.Luís S. Barbosa, Manuel A. Martins & Marta Carreteiro - 2014 - Journal of Logic, Language and Information 23 (1):31-52.
    This paper introduces an axiomatisation for equational hybrid logic based on previous axiomatizations and natural deduction systems for propositional and first-order hybrid logic. Its soundness and completeness is discussed. This work is part of a broader research project on the development a general proof calculus for hybrid logics.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 972