Results for 'Foundations of plane geometry'

949 found
Order:
  1.  16
    David Hilbert and the foundations of the theory of plane area.Eduardo N. Giovannini - 2021 - Archive for History of Exact Sciences 75 (6):649-698.
    This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph Foundation of Geometry. On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  38
    Groups and Plane Geometry.Victor Pambuccian - 2005 - Studia Logica 81 (3):387-398.
    We show that the first-order theory of a large class of plane geometries and the first-order theory of their groups of motions, understood both as groups with a unary predicate singling out line-reflections, and as groups acting on sets, are mutually inter-pretable.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  36
    (1 other version)Ternary operations as primitive notions for plane geometry II.Victor Pambuccian - 1992 - Mathematical Logic Quarterly 38 (1):345-348.
    We proved in the first part [1] that plane geometry over Pythagorean fields is axiomatizable by quantifier-free axioms in a language with three individual constants, one binary and three ternary operation symbols. In this paper we prove that two of these operation symbols are superfluous.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  20
    A structural and foundational analysis of euclid’s plane geometry: The case study of continuity.Pierluigi Graziani - 2014 - In Vincenzo Fano, Francesco Orilia & Giovanni Macchia (eds.), Space and Time: A Priori and a Posteriori Studies. Boston: De Gruyter. pp. 63-106.
    Direct download  
     
    Export citation  
     
    Bookmark  
  5.  5
    Matematica e Retorica a Roma: una lezione di geometria piana nell’Institutio oratoria di Quintiliano (Mathematics and Rhetoric in Rome: A Lesson in Plane Geometry in Quintilian's Institutio Oratoria).Mariacarolina Santoro - 2024 - Science and Philosophy 12 (2).
    Sunto Prendendo in esame quanto il celebre maestro di retorica Marco Fabio Quintiliano (35 d.C. ca - 100 d.C. ca) scrive in età flavia nella sua _Institutio oratoria_ a proposito dell’importanza dello studio della Matematica nella formazione di base del futuro perfetto oratore romano, si intende approfondire in particolare una porzione del lungo passo presente nel I libro (I 10, 34-49), nello specifico i §§ 39-45. In essi l’autore latino, partendo dall’affermazione che la geometria, non meno dell’aritmetica, con il suo (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6.  53
    Royden H. L.. Remarks on primitive notions for elementary Euclidean and non-Euclidean plane geometry. The axiomatic method with special reference to geometry and physics, Proceedings of an International Symposium held at the University of California, Berkeley, December 26,1957-January 4, 1958, Studies in logic and the foundations of mathematics, North-Holland Publishing Company, Amsterdam 1959, pp. 86–96. [REVIEW]Lesław W. Szczerba - 1970 - Journal of Symbolic Logic 35 (3):473-474.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  25
    The Foundations of Projective Geometry in Italy from De Paolis to Pieri.Carmela Zappulla, Aldo Brigaglia & Maurizio Avellone - 2002 - Archive for History of Exact Sciences 56 (5):363-425.
    In this paper we examine the contributions of the Italian geometrical school to the Foundations of Projective Geometry. Starting from De Paolis' work we discuss some papers by Segre, Peano, Veronese, Fano and Pieri. In particular we try to show how a totally abstract and general point of view was clearly adopted by the Italian scholars many years before the publication of Hilbert's Grundlagen.We are particularly interested in the interrelations between the Italian and the German schools (mainly the (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  8.  52
    The simplest axiom system for plane hyperbolic geometry.Victor Pambuccian - 2004 - Studia Logica 77 (3):385 - 411.
    We provide a quantifier-free axiom system for plane hyperbolic geometry in a language containing only absolute geometrically meaningful ternary operations (in the sense that they have the same interpretation in Euclidean geometry as well). Each axiom contains at most 4 variables. It is known that there is no axiom system for plane hyperbolic consisting of only prenex 3-variable axioms. Changing one of the axioms, one obtains an axiom system for plane Euclidean geometry, expressed in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  9.  24
    Affine Geometry and Relativity.Božidar Jovanović - 2023 - Foundations of Physics 53 (3):1-29.
    We present the basic concepts of space and time, the Galilean and pseudo-Euclidean geometry. We use an elementary geometric framework of affine spaces and groups of affine transformations to illustrate the natural relationship between classical mechanics and theory of relativity, which is quite often hidden, despite its fundamental importance. We have emphasized a passage from the group of Galilean motions to the group of Poincaré transformations of a plane. In particular, a 1-parametric family of natural deformations of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  22
    The foundation of algebraic geometry from Severi to André Weil.B. L. van der Waerden - 1971 - Archive for History of Exact Sciences 7 (3):171-180.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  26
    Frigyes Riesz and the emergence of general topology: The roots of ‘topological space’ in geometry.Laura Rodríguez - 2015 - Archive for History of Exact Sciences 69 (1):55-102.
    In 1906, Frigyes Riesz introduced a preliminary version of the notion of a topological space. He called it a mathematical continuum. This development can be traced back to the end of 1904 when, genuinely interested in taking up Hilbert’s foundations of geometry from 1902, Riesz aimed to extend Hilbert’s notion of a two-dimensional manifold to the three-dimensional case. Starting with the plane as an abstract point-set, Hilbert had postulated the existence of a system of neighbourhoods, thereby introducing (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12. Visual foundations of Euclidean Geometry.Véronique Izard, Pierre Pica & Elizabeth Spelke - 2022 - Cognitive Psychology 136 (August):101494.
    Geometry defines entities that can be physically realized in space, and our knowledge of abstract geometry may therefore stem from our representations of the physical world. Here, we focus on Euclidean geometry, the geometry historically regarded as “natural”. We examine whether humans possess representations describing visual forms in the same way as Euclidean geometry – i.e., in terms of their shape and size. One hundred and twelve participants from the U.S. (age 3–34 years), and 25 (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Leibniz's rigorous foundation of infinitesimal geometry by means of riemannian sums.Eberhard Knobloch - 2002 - Synthese 133 (1-2):59 - 73.
    In 1675, Leibniz elaborated his longest mathematical treatise he everwrote, the treatise ``On the arithmetical quadrature of the circle, theellipse, and the hyperbola. A corollary is a trigonometry withouttables''. It was unpublished until 1993, and represents a comprehensive discussion of infinitesimalgeometry. In this treatise, Leibniz laid the rigorous foundation of thetheory of infinitely small and infinite quantities or, in other words,of the theory of quantified indivisibles. In modern terms Leibnizintroduced `Riemannian sums' in order to demonstrate the integrabilityof continuous functions. The (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  14. Perceptual Foundations of Euclidean Geometry.Pierre Pica, Elizabeth Spelke & Véronique Izard - manuscript
     
    Export citation  
     
    Bookmark  
  15.  45
    Foundations of Geometry and Induction.Geometry in the Sensible World.The Logical Problem of Induction.Jean Nicod - 1932 - Routledge.
    First published in 2000. Routledge is an imprint of Taylor & Francis, an informa company.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  16.  28
    (1 other version)The Foundations of Geometry.David Hilbert - 1899 - Open Court Company (This Edition Published 1921).
    §30. Significance of Desargues's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CHAPTER VI. PASCAL'S THEOREM. §31. ...
    Direct download  
     
    Export citation  
     
    Bookmark   65 citations  
  17. On Tarski's foundations of the geometry of solids.Arianna Betti & Iris Loeb - 2012 - Bulletin of Symbolic Logic 18 (2):230-260.
    The paper [Tarski: Les fondements de la géométrie des corps, Annales de la Société Polonaise de Mathématiques, pp. 29—34, 1929] is in many ways remarkable. We address three historico-philosophical issues that force themselves upon the reader. First we argue that in this paper Tarski did not live up to his own methodological ideals, but displayed instead a much more pragmatic approach. Second we show that Leśniewski's philosophy and systems do not play the significant role that one may be tempted to (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  59
    What is it the Unbodied Spirit cannot do? Berkeley and Barrow on the Nature of Geometrical Construction.Stefan Storrie - 2012 - British Journal for the History of Philosophy 20 (2):249-268.
    In ?155 of his New Theory of Vision Berkeley explains that a hypothetical ?unbodied spirit? ?cannot comprehend the manner wherein geometers describe a right line or circle?.1The reason for this, Berkeley continues, is that ?the rule and compass with their use being things of which it is impossible he should have any notion.? This reference to geometrical tools has led virtually all commentators to conclude that at least one reason why the unbodied spirit cannot have knowledge of plane (...) is because it cannot manipulate a ruler or a compass. In this article I will show that such an interpretation is flawed. I will instead argue that Berkeley's understanding of Euclidian geometry was based on Isaac Barrow's account of the foundations of geometry. On this view geometrical objects are conceived in terms of the idealized motion that generates the objects of geometry. Consequently, that what the unbodied spirit cannot do in this context is to form an idea of motion rather than being unable to handle geometrical tools. 1All references to Berkeley are from, A. A. Luce and T. E. Jessop (eds.), The Works of George Berkeley, Bishop of Cloyne (London: Thomas Nelson and Sons, Ltd., 1948) The following abbreviations are used: An Essay Towards A New Theory of Vision, section x = New Theory x; Philosophical Commentaries, entry x = Commentaries x; Part I of A Treatise concerning the Principles of Knowledge, section x = Principles x. All other references to Berkeley's works are of the form The Works of George Berkeley, Bishop of Cloyne, volume x, page y = Works, x, y. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  47
    Hume on Geometry and Infinite Divisibility in the Treatise.H. Mark Pressman - 1997 - Hume Studies 23 (2):227-244.
    In lieu of an abstract, here is a brief excerpt of the content:Hume Studies Volume XXIII, Number 2, November 1997, pp. 227-244 Hume on Geometry and Infinite Divisibility in the Treatise H. MARK PRESSMAN Scholars have recognized that in the Treatise "Hume seeks to find a foundation for geometry in sense-experience."1 In this essay, I examine to what extent Hume succeeds in his attempt to ground geometry visually. I argue that the geometry Hume describes in the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  8
    Sensorimotor Underpinnings of Mathematical Imagination: Qualitative Analysis.Gin McCollum - 2022 - Frontiers in Psychology 12.
    Many mathematicians have a rich internal world of mental imagery. Using elementary mathematical skills, this study probes the mathematical imagination's sensorimotor foundations. Mental imagery is perturbed using body position: having the head and vestibular system in different positions with respect to gravity. No two mathematicians described the same imagery. Eight out of 11 habitually visualize, one uses sensorimotor imagery, and two do not habitually used mental imagery. Imagery was both intentional and partly autonomous. For example, coordinate planes rotated, drifted, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  76
    Point-free Foundation of Geometry and Multivalued Logic.Cristina Coppola, Giangiacomo Gerla & Annamaria Miranda - 2010 - Notre Dame Journal of Formal Logic 51 (3):383-405.
    Whitehead, in two basic books, considers two different approaches to point-free geometry: the inclusion-based approach , whose primitive notions are regions and inclusion relation between regions, and the connection-based approach , where the connection relation is considered instead of the inclusion. We show that the latter cannot be reduced to the first one, although this can be done in the framework of multivalued logics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  22
    (1 other version)Foundations of Geometry and Induction.Jean Nicod - 1930 - London, England: Routledge.
    First published in 2000. Routledge is an imprint of Taylor & Francis, an informa company.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. The Foundations of Geometry.Paul Carus - 1903 - The Monist 13 (3):370-397.
  24.  13
    The Foundations of Geometry (concluded).Paul Carus - 1903 - The Monist 13 (4):493-522.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  78
    Wanda Szmielew. New foundations of absolute geometry. Logic, methodology and philosophy of science, Proceedings of the 1960 International Congress, edited by Ernest Nagel, Patrick Suppes, and Alfred Tarski, Stanford University Press, Stanford, Calif., 1962, pp. 168–175. [REVIEW]Thomas Frayne - 1972 - Journal of Symbolic Logic 37 (1):201.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  26.  31
    Constructive Axiomatization of Plane Hyperbolic Geometry.Victor Pambuccian - 2001 - Mathematical Logic Quarterly 47 (4):475-488.
    We provide a universal axiom system for plane hyperbolic geometry in a firstorder language with two sorts of individual variables, ‘points’ and ‘lines’ , containing three individual constants, A0, A1, A2, standing for three non-collinear points, two binary operation symbols, φ and ι, with φ = l to be interpreted as ‘[MATHEMATICAL SCRIPT SMALL L] is the line joining A and B’ , and ι = P to be interpreted as [MATHEMATICAL SCRIPT SMALL L]P is the point of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory.Günther Eder - 2016 - Mind 125 (497):5-40.
    In a series of articles dating from 1903 to 1906, Frege criticizes Hilbert’s methodology of proving the independence and consistency of various fragments of Euclidean geometry in his Foundations of Geometry. In the final part of the last article, Frege makes his own proposal as to how the independence of genuine axioms should be proved. Frege contends that independence proofs require the development of a ‘new science’ with its own basic truths. This paper aims to provide a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  28.  45
    The Foundations of Geometry and the Concept of Motion: Helmholtz and Poincaré.Gerhard Heinzmann - 2001 - Science in Context 14 (3):457-470.
    ArgumentAccording to Hermann von Helmholtz, free mobility of bodies seemed to be an essential condition of geometry. This free mobility can be interpreted either as matter of fact, as a convention, or as a precondition making measurements in geometry possible. Since Henri Poincaré defined conventions as principles guided by experience, the question arises in which sense experiential data can serve as the basis for the constitution of geometry. Helmholtz considered muscular activity to be the basis on which (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  29.  13
    Foundations of Geometry.Bertrand Russell - 1996 - Routledge.
    The Foundations of Geometry was first published in 1897, and is based on Russell's Cambridge dissertation as well as lectures given during a journey through the USA. This is the first reprint, complete with a new introduction by John Slater. It provides both an insight into the foundations of Russell's philosophical thinking and an introduction to the philosophy of mathematics and logic. As such it will be an invaluable resource not only for students of philosophy, but also (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Space, points and mereology. On foundations of point-free Euclidean geometry.Rafał Gruszczyński & Andrzej Pietruszczak - 2009 - Logic and Logical Philosophy 18 (2):145-188.
    This article is devoted to the problem of ontological foundations of three-dimensional Euclidean geometry. Starting from Bertrand Russell’s intuitions concerning the sensual world we try to show that it is possible to build a foundation for pure geometry by means of the so called regions of space. It is not our intention to present mathematically developed theory, but rather demonstrate basic assumptions, tools and techniques that are used in construction of systems of point-free geometry and topology (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  31.  9
    A Paper on the Foundations of Projective Geometry.Edward T. Dixon - 2017
    A Paper on the Foundations of Projective Geometry - (Read before the Aristotelian Society, Dec. 13, 1897) is an unchanged, high-quality reprint of the original edition of 1898. Hansebooks is editor of the literature on different topic areas such as research and science, travel and expeditions, cooking and nutrition, medicine, and other genres. As a publisher we focus on the preservation of historical literature. Many works of historical writers and scientists are available today as antiques only. Hansebooks newly (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  26
    Constructive Axiomatizations of Plane Absolute, Euclidean and Hyperbolic Geometry.Victor Pambuccian - 2001 - Mathematical Logic Quarterly 47 (1):129-136.
    In this paper we provide quantifier-free, constructive axiomatizations for 2-dimensional absolute, Euclidean, and hyperbolic geometry. The main novelty consists in the first-order languages in which the axiom systems are formulated.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  34.  32
    Corrigendum to “The complexity of plane hyperbolic incidence geometry is ∀∃∀∃”.Victor Pambuccian - 2008 - Mathematical Logic Quarterly 54 (6):668-668.
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  27
    The complexity of plane hyperbolic incidence geometry is∀∃∀∃.Victor Pambuccian - 2005 - Mathematical Logic Quarterly 51 (3):277-281.
    We show that plane hyperbolic geometry, expressed in terms of points and the ternary relation of collinearity alone, cannot be expressed by means of axioms of complexity at most ∀∃∀, but that there is an axiom system, all of whose axioms are ∀∃∀∃ sentences. This remains true for Klingenberg's generalized hyperbolic planes, with arbitrary ordered fields as coordinate fields.
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  36.  38
    A Proposition of Elementary Plane Geometry that Implies the Continuum Hypothesis.Frederick Bagemihl - 1961 - Mathematical Logic Quarterly 7 (1-5):77-79.
  37.  23
    The Foundations of Geometry and Induction.Jean Nicod - 1930 - Humana Mente 5 (19):455-460.
    Direct download  
     
    Export citation  
     
    Bookmark   32 citations  
  38. The Foundations of Geometry[REVIEW]Edward T. Dixon - 1891 - Ancient Philosophy (Misc) 2:126.
     
    Export citation  
     
    Bookmark  
  39. On the Foundations of Geometry.Gottlob Frege - 1960 - Philosophical Review 69 (1):3-17.
  40.  15
    Leibniz on the Parallel Postulate and the Foundations of Geometry: The Unpublished Manuscripts.Vincenzo De Risi - 2016 - New York/London: Birkhäuser.
    This book offers a general introduction to the geometrical studies of Gottfried Wilhelm Leibniz and his mathematical epistemology. In particular, it focuses on his theory of parallel lines and his attempts to prove the famous Parallel Postulate. Furthermore it explains the role that Leibniz’s work played in the development of non-Euclidean geometry. The first part is an overview of his epistemology of geometry and a few of his geometrical findings, which puts them in the context of the 17th-century (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  41.  40
    The Foundations of Geometry and Induction. By Jean Nicod. Prefaces by Bertrand Russell and André Lalande. (London: Kegan Paul, Trench, Trübner & Co., Ltd. 1929. Pp. 286. Price 16s.). [REVIEW]H. Wallis Chapman - 1930 - Philosophy 5 (19):455-.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  40
    Quantum Measurements and Finite Geometry.W. K. Wootters - 2006 - Foundations of Physics 36 (1):112-126.
    A complete set of mutually unbiased bases for a Hilbert space of dimension N is analogous in some respects to a certain finite geometric structure, namely, an affine plane. Another kind of quantum measurement, known as a symmetric informationally complete positive-operator-valued measure, is, remarkably, also analogous to an affine plane, but with the roles of points and lines interchanged. In this paper I present these analogies and ask whether they shed any light on the existence or non-existence of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  12
    Graphical Choices and Geometrical Thought in the Transmission of Theodosius’ Spherics from Antiquity to the Renaissance.Michela Malpangotto - 2009 - Archive for History of Exact Sciences 64 (1):75-112.
    Spherical geometry studies the sphere not simply as a solid object in itself, but chiefly as the spatial context of the elements which interact on it in a complex three-dimensional arrangement. This compels to establish graphical conventions appropriate for rendering on the same plane—the plane of the diagram itself—the spatial arrangement of the objects under consideration. We will investigate such “graphical choices” made in the Theodosius’ Spherics from antiquity to the Renaissance. Rather than undertaking a minute analysis (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  19
    Foundations of Geometry and Induction. [REVIEW]Henry Bradford Smith - 1932 - Philosophical Review 41 (3):320-322.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  24
    Ternary operations as primitive notions for constructive plane geometry III.Victor Pambuccian - 1993 - Mathematical Logic Quarterly 39 (1):393-402.
    This paper continues the investigations begun in [6] and continued in [7] about quantifier-free axiomatizations of plane Euclidean geometry using ternary operations. We show that plane Euclidean geometry over Archimedean ordered Euclidean fields can be axiomatized using only two ternary operations if one allows axioms that are not first-order but universal Lw1,w sentences. The operations are: the transport of a segment on a halfline that starts at one of the endpoints of the given segment, and the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  47
    On the Foundations of Geometry and Formal Theories of Arithmetic.John Corcoran - 1973 - Philosophy and Phenomenological Research 34 (2):283-286.
  47. Neo-Kantian foundations of geometry in the German Romantic period.Frederick Gregory - 1983 - Historia Mathematica:184-201.
    No categories
     
    Export citation  
     
    Bookmark   2 citations  
  48. Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. New York: Birkhäuser. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  31
    Ternary Operations as Primitive Notions for Constructive Plane Geometry VI.Victor Pambuccian - 1995 - Mathematical Logic Quarterly 41 (3):384-394.
    In this paper we provide quantifier-free, constructive axiomatizations for several fragments of plane Euclidean geometry over Euclidean fields, such that each axiom contains at most 4 variables. The languages in which they are expressed contain only at most ternary operations. In some precisely defined sense these axiomatizations are the simplest possible.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  44
    Foundations of geometric cognition.Mateusz Hohol - 2019 - London-New York: Routledge.
    The cognitive foundations of geometry have puzzled academics for a long time, and even today are mostly unknown to many scholars, including mathematical cognition researchers. -/- Foundations of Geometric Cognition shows that basic geometric skills are deeply hardwired in the visuospatial cognitive capacities of our brains, namely spatial navigation and object recognition. These capacities, shared with non-human animals and appearing in early stages of the human ontogeny, cannot, however, fully explain a uniquely human form of geometric cognition. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 949