Results for '03B55'

13 found
Order:
  1.  25
    Stable Modal Logics.Guram Bezhanishvili, Nick Bezhanishvili & Julia Ilin - 2018 - Review of Symbolic Logic 11 (3):436-469.
    Stable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  28
    The Mckinsey–Tarski Theorem for Locally Compact Ordered Spaces.Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan & Jan van Mill - 2021 - Bulletin of Symbolic Logic 27 (2):187-211.
    We prove that the modal logic of a crowded locally compact generalized ordered space is$\textsf {S4}$. This provides a version of the McKinsey–Tarski theorem for generalized ordered spaces. We then utilize this theorem to axiomatize the modal logic of an arbitrary locally compact generalized ordered space.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  47
    Extended Frames and Separations of Logical Principles.Makoto Fujiwara, Hajime Ishihara, Takako Nemoto, Nobu-Yuki Suzuki & Keita Yokoyama - 2023 - Bulletin of Symbolic Logic 29 (3):311-353.
    We aim at developing a systematic method of separating omniscience principles by constructing Kripke models for intuitionistic predicate logic $\mathbf {IQC}$ and first-order arithmetic $\mathbf {HA}$ from a Kripke model for intuitionistic propositional logic $\mathbf {IPC}$. To this end, we introduce the notion of an extended frame, and show that each IPC-Kripke model generates an extended frame. By using the extended frame generated by an IPC-Kripke model, we give a separation theorem of a schema from a set of schemata in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  4
    Conservation as Translation.Giulio Fellin & Peter Schuster - forthcoming - Review of Symbolic Logic:1-33.
    Glivenko’s theorem says that classical provability of a propositional formula entails intuitionistic provability of the double negation of that formula. This stood right at the beginning of the success story of negative translations, indeed mainly designed for converting classically derivable formulae into intuitionistically derivable ones. We now generalise this approach: simultaneously from double negation to an arbitrary nucleus; from provability in a calculus to an inductively generated abstract consequence relation; and from propositional logic to any set of objects whatsoever. In (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  26
    Something Valid This Way Comes: A Study of Neologicism and Proof-Theoretic Validity.Will Stafford - 2022 - Bulletin of Symbolic Logic 28 (4):530-531.
    The interplay of philosophical ambitions and technical reality have given birth to rich and interesting approaches to explain the oft-claimed special character of mathematical and logical knowledge. Two projects stand out both for their audacity and their innovativeness. These are logicism and proof-theoretic semantics. This dissertation contains three chapters exploring the limits of these two projects. In both cases I find the formal results offer a mixed blessing to the philosophical projects. Chapter 1. Is a logicist bound to the claim (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  37
    Completeness of intermediate logics with doubly negated axioms.Mohammad Ardeshir & S. Mojtaba Mojtahedi - 2014 - Mathematical Logic Quarterly 60 (1-2):6-11.
    Let denote a first‐order logic in a language that contains infinitely many constant symbols and also containing intuitionistic logic. By, we mean the associated logic axiomatized by the double negation of the universal closure of the axioms of plus. We shall show that if is strongly complete for a class of Kripke models, then is strongly complete for the class of Kripke models that are ultimately in.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  39
    Prefinitely axiomatizable modal and intermediate logics.Marcus Kracht - 1993 - Mathematical Logic Quarterly 39 (1):301-322.
    A logic Λ bounds a property P if all proper extensions of Λ have P while Λ itself does not. We construct logics bounding finite axiomatizability and logics bounding finite model property in the lattice of intermediate logics and in the lattice of normal extensions of K4.3. MSC: 03B45, 03B55.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  8.  19
    Connexive Implications in Substructural Logics.Davide Fazio & Gavin St John - 2024 - Review of Symbolic Logic 17 (3):878-909.
    This paper is devoted to the investigation of term-definable connexive implications in substructural logics with exchange and, on the semantical perspective, in sub-varieties of commutative residuated lattices (FL ${}_{\scriptsize\mbox{e}}$ -algebras). In particular, we inquire into sufficient and necessary conditions under which generalizations of the connexive implication-like operation defined in [6] for Heyting algebras still satisfy connexive theses. It will turn out that, in most cases, connexive principles are equivalent to the equational Glivenko property with respect to Boolean algebras. Furthermore, we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  22
    Intermediate logics preserving admissible inference rules of heyting calculus.Vladimir V. Rybakov - 1993 - Mathematical Logic Quarterly 39 (1):403-415.
    The aim of this paper is to look from the point of view of admissibility of inference rules at intermediate logics having the finite model property which extend Heyting's intuitionistic propositional logic H. A semantic description for logics with the finite model property preserving all admissible inference rules for H is given. It is shown that there are continuously many logics of this kind. Three special tabular intermediate logics λ, 1 ≥ i ≥ 3, are given which describe all tabular (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  10.  38
    Temporal Interpretation of Monadic Intuitionistic Quantifiers.Guram Bezhanishvili & Luca Carai - 2023 - Review of Symbolic Logic 16 (1):164-187.
    We show that monadic intuitionistic quantifiers admit the following temporal interpretation: “always in the future” (for$\forall $) and “sometime in the past” (for$\exists $). It is well known that Prior’s intuitionistic modal logic${\sf MIPC}$axiomatizes the monadic fragment of the intuitionistic predicate logic, and that${\sf MIPC}$is translated fully and faithfully into the monadic fragment${\sf MS4}$of the predicate${\sf S4}$via the Gödel translation. To realize the temporal interpretation mentioned above, we introduce a new tense extension${\sf TS4}$of${\sf S4}$and provide a full and faithful translation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  27
    Decidability of admissibility: On a problem by Friedman and its solution by Rybakov.Jeroen P. Goudsmit - 2021 - Bulletin of Symbolic Logic 27 (1):1-38.
    Rybakov proved that the admissible rules of $\mathsf {IPC}$ are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  27
    An Algebraic Approach to Inquisitive and -Logics.Nick Bezhanishvili, Gianluca Grilletti & Davide Emilio Quadrellaro - 2022 - Review of Symbolic Logic 15 (4):950-990.
    This article provides an algebraic study of the propositional system $\mathtt {InqB}$ of inquisitive logic. We also investigate the wider class of $\mathtt {DNA}$ -logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, $\mathtt {DNA}$ -varieties. We prove that the lattice of $\mathtt {DNA}$ -logics is dually isomorphic to the lattice of $\mathtt {DNA}$ -varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff’s classic variety (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  19
    On Equational Completeness Theorems.Tommaso Moraschini - 2022 - Journal of Symbolic Logic 87 (4):1522-1575.
    A logic is said to admit an equational completeness theorem when it can be interpreted into the equational consequence relative to some class of algebras. We characterize logics admitting an equational completeness theorem that are either locally tabular or have some tautology. In particular, it is shown that a protoalgebraic logic admits an equational completeness theorem precisely when it has two distinct logically equivalent formulas. While the problem of determining whether a logic admits an equational completeness theorem is shown to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation