Results for '$\Sigma_{1}$-definability'

191 found
Order:
  1.  35
    A characterization of the $\Sigma_1$ -definable functions of $KP\omega + $.Wolfgang Burr & Volker Hartung - 1998 - Archive for Mathematical Logic 37 (3):199-214.
    The subject of this paper is a characterization of the $\Sigma_1$ -definable set functions of Kripke-Platek set theory with infinity and a uniform version of axiom of choice: $KP\omega+(uniform\;AC)$ . This class of functions is shown to coincide with the collection of set functionals of type 1 primitive recursive in a given choice functional and $x\mapsto\omega$ . This goal is achieved by a Gödel Dialectica-style functional interpretation of $KP\omega+(uniform\;AC)$ and a computability proof for the involved functionals.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  2.  37
    $\Sigma^1_1$ -Completeness of a Fragment of the Theory of Trees with Subtree Relation.P. Cintioli & S. Tulipani - 1994 - Notre Dame Journal of Formal Logic 35 (3):426-432.
    We consider the structure of all labeled trees, called also infinite terms, in the first order language with function symbols in a recursive signature of cardinality at least two and at least a symbol of arity two, with equality and a binary relation symbol which is interpreted to be the subtree relation. The existential theory over of this structure is decidable (see Tulipani [9]), but more complex fragments of the theory are undecidable. We prove that the theory of the structure (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  3.  5
    Certified $\sigma_1$ -sentences.Taishi Kurahashi & Albert Visser - forthcoming - Journal of Symbolic Logic:1-29.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  73
    Ordinal arithmetic and $\Sigma_{1}$ -elementarity.Timothy J. Carlson - 1999 - Archive for Mathematical Logic 38 (7):449-460.
    We will introduce a partial ordering $\preceq_1$ on the class of ordinals which will serve as a foundation for an approach to ordinal notations for formal systems of set theory and second-order arithmetic. In this paper we use $\preceq_1$ to provide a new characterization of the ubiquitous ordinal $\epsilon _{0}$.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  5.  32
    The σ1-definable universal finite sequence.Joel David Hamkins & Kameryn J. Williams - 2022 - Journal of Symbolic Logic 87 (2):783-801.
    We introduce the $\Sigma _1$ -definable universal finite sequence and prove that it exhibits the universal extension property amongst the countable models of set theory under end-extension. That is, the sequence is $\Sigma _1$ -definable and provably finite; the sequence is empty in transitive models; and if M is a countable model of set theory in which the sequence is s and t is any finite extension of s in this model, then there is an end-extension of M to a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  68
    (3 other versions)Fragments of $HA$ based on $\Sigma_1$ -induction.Kai F. Wehmeier - 1997 - Archive for Mathematical Logic 37 (1):37-49.
    In the first part of this paper we investigate the intuitionistic version $iI\!\Sigma_1$ of $I\!\Sigma_1$ (in the language of $PRA$ ), using Kleene's recursive realizability techniques. Our treatment closely parallels the usual one for $HA$ and establishes a number of nice properties for $iI\!\Sigma_1$ , e.g. existence of primitive recursive choice functions (this is established by different means also in [D94]). We then sharpen an unpublished theorem of Visser's to the effect that quantifier alternation alone is much less powerful intuitionistically (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  7.  71
    The Closed Fragment of the Interpretability Logic of PRA with a Constant for $\mathrm{I}\Sigma_1$.Joost J. Joosten - 2005 - Notre Dame Journal of Formal Logic 46 (2):127-146.
    In this paper we carry out a comparative study of $\mathrm{I}\Sigma_1$ and PRA. We will in a sense fully determine what these theories have to say about each other in terms of provability and interpretability. Our study will result in two arithmetically complete modal logics with simple universal models.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  19
    Complexity of $$\Sigma ^0_n$$-classifications for definable subsets.Svetlana Aleksandrova, Nikolay Bazhenov & Maxim Zubkov - 2022 - Archive for Mathematical Logic 62 (1):239-256.
    For a non-zero natural number n, we work with finitary $$\Sigma ^0_n$$ -formulas $$\psi (x)$$ without parameters. We consider computable structures $${\mathcal {S}}$$ such that the domain of $${\mathcal {S}}$$ has infinitely many $$\Sigma ^0_n$$ -definable subsets. Following Goncharov and Kogabaev, we say that an infinite list of $$\Sigma ^0_n$$ -formulas is a $$\Sigma ^0_n$$ -classification for $${\mathcal {S}}$$ if the list enumerates all $$\Sigma ^0_n$$ -definable subsets of $${\mathcal {S}}$$ without repetitions. We show that an arbitrary computable $${\mathcal {S}}$$ (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  35
    The sigma profile: A formal tool to study organization and its evolution at multiple scales.Carlos Gershenson - 2011 - Complexity 16 (5):37-44.
    The σ profile is presented as a tool to analyze the organization of systems at different scales, and how this organization changes in time. Describing structures at different scales as goal‐oriented agents, one can define σ ∈ [0,1] (satisfaction) as the degree to which the goals of each agent at each scale have been met. σ reflects the organization degree at that scale. The σ profile of a system shows the satisfaction at different scales, with the possibility to study their (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  10. Two applications of inner model theory to the study of $\underset \sim \to{\sigma}{}_{2}^{1}$ sets.Greg Hjorth - 1996 - Bulletin of Symbolic Logic 2 (1):94 - 107.
    §0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  8
    1. Alpha und Omega, San und Sigma.Eb Nestle - 1911 - Philologus: Zeitschrift für Antike Literatur Und Ihre Rezeption 70 (1-4):155-157.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  24
    Baire Categoricity and $\Sigma^{0}_{1}$ -Induction.Stephen G. Simpson - 2014 - Notre Dame Journal of Formal Logic 55 (1):75-78.
  13.  26
    Conservative fragments of $${{S}^{1}{2}}$$ and $${{R}^{1}{2}}$$. [REVIEW]Chris Pollett - 2011 - Archive for Mathematical Logic 50 (3):367-393.
    Conservative subtheories of $${{R}^{1}_{2}}$$ and $${{S}^{1}_{2}}$$ are presented. For $${{S}^{1}_{2}}$$, a slight tightening of Jeřábek’s result (Math Logic Q 52(6):613–624, 2006) that $${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$$ is presented: It is shown that $${T^{0}_{2}}$$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this $${\forall\Sigma^{b}_{1}}$$ -theory, we define a $${\forall\Sigma^{b}_{0}}$$ -theory, $${T^{-1}_{2}}$$, for the $${\forall\Sigma^{b}_{0}}$$ -consequences of $${S^{1}_{2}}$$. We show $${T^{-1}_{2}}$$ is weak by showing it cannot $${\Sigma^{b}_{0}}$$ -define division by 3. We then consider what (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  34
    On the $\Sigma^01$-conservativity of $\Sigma^01$-completeness.Albert Visser - 1991 - Notre Dame Journal of Formal Logic 32 (4):554-561.
  15.  40
    Six Sigma Methodology in Increasing Spirulina Production.Daniel Freire, Omar Flor & Gabriela Alvarez - 2020 - Minerva 1 (1):23-28.
    This work presents results of improvement in the productivity of Arthrospira platensis in a company dedicated to its production. The six sigma methodology was applied in production processes that require the use of bioreactors. Starting from the analysis of the current state, aspects, physical and chemical variables that directly influence the productivity achieved were identified. Various culture media were tested and subsequently scaled for industrial production. In addition, the incorporation of carbon into the culture medium was controlled, optimizing the range (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  16.  26
    On Qualitative Probability Sigma-Algebras.C. Villegas - 1964 - Annals of Mathematical Statistics 35:1787-1796.
    The first clear and precise statement of the axioms of qualitative probability was given by de Finetti ([1], Section 13). A more detailed treatment, based however on more complex axioms for conditional qualitative probability, was given later by Koopman [5]. De Finetti and Koopman derived a probability measure from a qualitative probability under the assumption that, for any integer n, there are n mutually exclusive, equally probable events. L. J. Savage [6] has shown that this strong assumption is unnecessary. More (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  17.  72
    Extension of relatively |sigma-additive probabilities on Boolean algebras of logic.Mohamed A. Amer - 1985 - Journal of Symbolic Logic 50 (3):589 - 596.
    Contrary to what is stated in Lemma 7.1 of [8], it is shown that some Boolean algebras of finitary logic admit finitely additive probabilities that are not σ-additive. Consequences of Lemma 7.1 are reconsidered. The concept of a C-σ-additive probability on B (where B and C are Boolean algebras, and $\mathscr{B} \subseteq \mathscr{C}$ ) is introduced, and a generalization of Hahn's extension theorem is proved. This and other results are employed to show that every S̄(L)-σ-additive probability on s̄(L) can be (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  44
    Fragments of approximate counting.Samuel R. Buss, Leszek Aleksander Kołodziejczyk & Neil Thapen - 2014 - Journal of Symbolic Logic 79 (2):496-525.
    We study the long-standing open problem of giving$\forall {\rm{\Sigma }}_1^b$separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the$\forall {\rm{\Sigma }}_1^b$Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  19.  17
    Variations on determinacy and ℵω1.Ramez L. Sami - 2022 - Journal of Symbolic Logic 87 (2):721-731.
    We consider a seemingly weaker form of $\Delta ^{1}_{1}$ Turing determinacy.Let $2 \leqslant \rho < \omega _{1}^{\mathsf {CK}}$, $\textrm{Weak-Turing-Det}_{\rho }$ is the statement:Every $\Delta ^{1}_{1}$ set of reals cofinal in the Turing degrees contains two Turing distinct, $\Delta ^{0}_{\rho }$ -equivalent reals.We show in $\mathsf {ZF}^-$ : $\textrm{Weak-Turing-Det}_{\rho }$ implies: for every $\nu < \omega _{1}^{\mathsf {CK}}$ there is a transitive model ${M \models \mathsf {ZF}^{-} + \textrm{``}\aleph _{\nu } \textrm{ exists''.}}$ As a corollary:If every cofinal $\Delta ^{1}_{1}$ set of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  97
    Branching in the $${\Sigma^0_2}$$ -enumeration degrees: a new perspective. [REVIEW]Maria L. Affatato, Thomas F. Kent & Andrea Sorbi - 2008 - Archive for Mathematical Logic 47 (3):221-231.
    We give an alternative and more informative proof that every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree is the meet of two incomparable ${\Sigma^{0}_{2}}$ -degrees, which allows us to show the stronger result that for every incomplete ${\Sigma^{0}_{2}}$ -enumeration degree a, there exist enumeration degrees x 1 and x 2 such that a, x 1, x 2 are incomparable, and for all b ≤ a, b = (b ∨ x 1 ) ∧ (b ∨ x 2 ).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  16
    Interpreting a Field in its Heisenberg Group.Rachael Alvir, Wesley Calvert, Grant Goodman, Valentina Harizanov, Julia Knight, Russell Miller, Andrey Morozov, Alexandra Soskova & Rose Weisshaar - 2022 - Journal of Symbolic Logic 87 (3):1215-1230.
    We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by $H(F)$ the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in $H(F)$ using computable $\Sigma _1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  25
    On axiom schemes for T-provably $${\Delta_{1}}$$ Δ 1 formulas.A. Cordón-Franco, A. Fernández-Margarit & F. F. Lara-Martín - 2014 - Archive for Mathematical Logic 53 (3):327-349.
    This paper investigates the status of the fragments of Peano Arithmetic obtained by restricting induction, collection and least number axiom schemes to formulas which are $${\Delta_1}$$ provably in an arithmetic theory T. In particular, we determine the provably total computable functions of this kind of theories. As an application, we obtain a reduction of the problem whether $${I\Delta_0 + \neg \mathit{exp}}$$ implies $${B\Sigma_1}$$ to a purely recursion-theoretic question.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  93
    P 0 1 \pi^0_1 -presentations of algebras.Bakhadyr Khoussainov, Theodore Slaman & Pavel Semukhin - 2006 - Archive for Mathematical Logic 45 (6):769-781.
    In this paper we study the question as to which computable algebras are isomorphic to non-computable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi_{1}^{0}$$\end{document}-algebras. We show that many known algebras such as the standard model of arithmetic, term algebras, fields, vector spaces and torsion-free abelian groups have non-computable\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi_{1}^{0}$$\end{document}-presentations. On the other hand, many of this structures fail to have non-computable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma_{1}^{0}$$\end{document}-presentation.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  40
    Cichoń’s diagram, regularity properties and $${\varvec{\Delta}^1_3}$$ Δ 3 1 sets of reals.Vera Fischer, Sy David Friedman & Yurii Khomskii - 2014 - Archive for Mathematical Logic 53 (5-6):695-729.
    We study regularity properties related to Cohen, random, Laver, Miller and Sacks forcing, for sets of real numbers on the Δ31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_3}$$\end{document} level of the projective hieararchy. For Δ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Delta}^1_2}$$\end{document} and Σ21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Sigma}^1_2}$$\end{document} sets, the relationships between these properties follows the pattern of the well-known Cichoń diagram for cardinal characteristics of the continuum. It is known that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25.  62
    Argos and the argolid A. pariente, G. touchais (edd.); 'A[rho][gamma][omicron][final small sigma] [kappa][alpha][iota, accent] a[rho][gamma][omicron][lambda][delta][alpha]: Τo[pi]o[gamma][rho][alpha][phi][iota, accent][alpha] [kappa][alpha][iota] [pi]o[lambda][epsilon]o[delta]o[mu][iota, accent][alpha] /argos et l'argolide: Topographie et histoire. ( [Pi][rho][alpha][kappa]τ[iota][kappa][alpha, accent] [delta][iota][epsilon][theta][nu][omicron][upsilon, accent][final small sigma] [sigma][upsilon][nu][epsilon][delta][rho][iota, accent][omicron][upsilon] /actes de la table ronde internationale, a[theta][eta, accent][nu][alpha]–'a[rho][gamma][omicron][final small sigma] 28/4–1/5/1990 athènes–argos). (E[lambda][lambda][eta][nu][omicron][gamma][alpha][lambda][lambda][iota][kappa][epsilon, accent][final small sigma] [epsilon, accent][rho][epsilon][upsilon][nu][epsilon][final small sigma] /recherches Franco-helléniques, 3.) pp. XIV + 507, text figs, 14 pls, 9 overlays, 2 foldout plans. Nafpli. [REVIEW]Graham Shipley - 2000 - The Classical Review 50 (02):550-.
  26.  29
    Topological Structure of Diagonalizable Algebras and Corresponding Logical Properties of Theories.Giovanna D'Agostino - 1994 - Notre Dame Journal of Formal Logic 35 (4):563-572.
    This paper studies the topological duality between diagonalizable algebras and bi-topological spaces. In particular, the correspondence between algebraic properties of a diagonalizable algebra and topological properties of its dual space is investigated. Since the main example of a diagonalizable algebra is the Lindenbaum algebra of an r.e. theory extending Peano Arithmetic, endowed with an operator defined by means of the provability predicate of the theory, this duality gives the possibility to study arithmetical properties of theories from a topological point of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27. The ℵ1-categoricity of strictly upper triangular matrix rings over algebraically closed fields.Bruce I. Rose - 1978 - Journal of Symbolic Logic 43 (2):250 - 259.
    Let n ≥ 3. The following theorems are proved. Theorem. The theory of the class of strictly upper triangular n × n matrix rings over fields is finitely axiomatizable. Theorem. If R is a strictly upper triangular n × n matrix ring over a field K, then there is a recursive map σ from sentences in the language of rings with constants for K into sentences in the language of rings with constants for R such that $K \vDash \varphi$ if (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  18
    The -provability logic of.Mohammad Ardeshir & Mojtaba Mojtahedi - 2019 - Journal of Symbolic Logic 84 (3):1118-1135.
    For the Heyting Arithmetic HA, $HA^{\text{*}} $ is defined [14, 15] as the theory $\left\{ {A|HA \vdash A^\square } \right\}$, where $A^\square $ is called the box translation of A. We characterize the ${\text{\Sigma }}_1 $-provability logic of $HA^{\text{*}} $ as a modal theory $iH_\sigma ^{\text{*}} $.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  57
    A note on the theory of positive induction, $${{\rm ID}^*_1}$$.Bahareh Afshari & Michael Rathjen - 2010 - Archive for Mathematical Logic 49 (2):275-281.
    The article shows a simple way of calibrating the strength of the theory of positive induction, ${{\rm ID}^{*}_{1}}$ . Crucially the proof exploits the equivalence of ${\Sigma^{1}_{1}}$ dependent choice and ω-model reflection for ${\Pi^{1}_{2}}$ formulae over ACA 0. Unbeknown to the authors, D. Probst had already determined the proof-theoretic strength of ${{\rm ID}^{*}_{1}}$ in Probst, J Symb Log, 71, 721–746, 2006.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  30.  84
    Provability and Interpretability Logics with Restricted Realizations.Thomas F. Icard & Joost J. Joosten - 2012 - Notre Dame Journal of Formal Logic 53 (2):133-154.
    The provability logic of a theory $T$ is the set of modal formulas, which under any arithmetical realization are provable in $T$. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set $\Gamma$. We make an analogous modification for interpretability logics. We first study provability logics with restricted realizations and show that for various natural candidates of $T$ and restriction set $\Gamma$, the result is the logic of linear frames. However, for the theory Primitive (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  31.  34
    Characterizations of ordinal analysis.James Walsh - 2023 - Annals of Pure and Applied Logic 174 (4):103230.
    Ordinal analysis is a research program wherein recursive ordinals are assigned to axiomatic theories. According to conventional wisdom, ordinal analysis measures the strength of theories. Yet what is the attendant notion of strength? In this paper we present abstract characterizations of ordinal analysis that address this question. -/- First, we characterize ordinal analysis as a partition of $\Sigma^1_1$-definable and $\Pi^1_1$-sound theories, namely, the partition whereby two theories are equivalent if they have the same proof-theoretic ordinal. We show that no equivalence (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  30
    How Strong is Ramsey’s Theorem If Infinity Can Be Weak?Leszek Aleksander Kołodziejczyk, Katarzyna W. Kowalik & Keita Yokoyama - 2023 - Journal of Symbolic Logic 88 (2):620-639.
    We study the first-order consequences of Ramsey’s Theorem fork-colourings ofn-tuples, for fixed$n, k \ge 2$, over the relatively weak second-order arithmetic theory$\mathrm {RCA}^*_0$. Using the Chong–Mourad coding lemma, we show that in a model of$\mathrm {RCA}^*_0$that does not satisfy$\Sigma ^0_1$induction,$\mathrm {RT}^n_k$is equivalent to its relativization to any proper$\Sigma ^0_1$-definable cut, so its truth value remains unchanged in all extensions of the model with the same first-order universe.We give a complete axiomatization of the first-order consequences of$\mathrm {RCA}^*_0 + \mathrm {RT}^n_k$for$n \ge (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  11
    Parameterfree Comprehension Does Not Imply Full Comprehension in Second Order Peano Arithmetic.Vladimir Kanovei & Vassily Lyubetsky - forthcoming - Studia Logica:1-16.
    The parameter-free part $$\textbf{PA}_2^*$$ of $$\textbf{PA}_2$$, second order Peano arithmetic, is considered. We make use of a product/iterated Sacks forcing to define an $$\omega $$ -model of $$\textbf{PA}_2^*+ \textbf{CA}(\Sigma ^1_2)$$, in which an example of the full Comprehension schema $$\textbf{CA}$$ fails. Using Cohen’s forcing, we also define an $$\omega $$ -model of $$\textbf{PA}_2^*$$, in which not every set has its complement, and hence the full $$\textbf{CA}$$ fails in a rather elementary way.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  93
    The complexity of orbits of computably enumerable sets.Peter A. Cholak, Rodney Downey & Leo A. Harrington - 2008 - Bulletin of Symbolic Logic 14 (1):69 - 87.
    The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, ε, such that the question of membership in this orbit is ${\Sigma _1^1 }$ -complete. This result and proof have a number of nice corollaries: the Scott rank of ε is $\omega _1^{{\rm{CK}}}$ + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of ε; for all finite α ≥ 9, there is a properly $\Delta (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  19
    Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
    Suppose that M⊧PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}\models \mathsf{PA}$$\end{document} and X⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak X} \subseteq {\mathcal P}$$\end{document}. If M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}$$\end{document} has a finitely generated elementary end extension N≻endM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal N}\succ _\mathsf{end} {\mathcal M}$$\end{document} such that {X∩M:X∈Def}=X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X \cap M : X \in {{\mathrm{Def}}}\} = (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  36.  53
    Preservation theorems for bounded formulas.Morteza Moniri - 2007 - Archive for Mathematical Logic 46 (1):9-14.
    In this paper we naturally define when a theory has bounded quantifier elimination, or is bounded model complete. We give several equivalent conditions for a theory to have each of these properties. These results provide simple proofs for some known results in the model theory of the bounded arithmetic theories like CPV and PV1. We use the mentioned results to obtain some independence results in the context of intuitionistic bounded arithmetic. We show that, if the intuitionistic theory of polynomial induction (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  81
    An Incompleteness Theorem Via Ordinal Analysis.James Walsh - 2024 - Journal of Symbolic Logic 89 (1):80-96.
    We present an analogue of Gödel’s second incompleteness theorem for systems of second-order arithmetic. Whereas Gödel showed that sufficiently strong theories that are $\Pi ^0_1$ -sound and $\Sigma ^0_1$ -definable do not prove their own $\Pi ^0_1$ -soundness, we prove that sufficiently strong theories that are $\Pi ^1_1$ -sound and $\Sigma ^1_1$ -definable do not prove their own $\Pi ^1_1$ -soundness. Our proof does not involve the construction of a self-referential sentence but rather relies on ordinal analysis.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38. Parameterfree Comprehension Does Not Imply Full Comprehension in Second Order Peano Arithmetic.Vladimir Kanovei & Vassily Lyubetsky - 2025 - Studia Logica 113 (1):109-124.
    The parameter-free part \(\textbf{PA}_2^*\) of \(\textbf{PA}_2\), second order Peano arithmetic, is considered. We make use of a product/iterated Sacks forcing to define an \(\omega \) -model of \(\textbf{PA}_2^*+ \textbf{CA}(\Sigma ^1_2)\), in which an example of the full Comprehension schema \(\textbf{CA}\) fails. Using Cohen’s forcing, we also define an \(\omega \) -model of \(\textbf{PA}_2^*\), in which not every set has its complement, and hence the full \(\textbf{CA}\) fails in a rather elementary way.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  32
    A class of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma {3}^{0}}$$\end{document} modular lattices embeddable as principal filters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast }(V{\infty })}$$\end{document}. [REVIEW]Rumen Dimitrov - 2008 - Archive for Mathematical Logic 47 (2):111-132.
    Let I0 be a a computable basis of the fully effective vector space V∞ over the computable field F. Let I be a quasimaximal subset of I0 that is the intersection of n maximal subsets of the same 1-degree up to *. We prove that the principal filter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast}(V,\uparrow )}$$\end{document} of V = cl(I) is isomorphic to the lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(n, \overline{F})}$$\end{document} of subspaces (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  63
    The logic of first order intuitionistic type theory with weak sigma- elimination.M. D. G. Swaen - 1991 - Journal of Symbolic Logic 56 (2):467-483.
    Via the formulas-as-types embedding certain extensions of Heyting Arithmetic can be represented in intuitionistic type theories. In this paper we discuss the embedding of ω-sorted Heyting Arithmetic HA ω into a type theory WL, that can be described as Troelstra's system ML 1 0 with so-called weak Σ-elimination rules. By syntactical means it is proved that a formula is derivable in HA ω if and only if its corresponding type in WL is inhabited. Analogous results are proved for Diller's so-called (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  40
    Hierarchies of Forcing Axioms II.Itay Neeman - 2008 - Journal of Symbolic Logic 73 (2):522 - 542.
    A $\Sigma _{1}^{2}$ truth for λ is a pair 〈Q, ψ〉 so that Q ⊆ Hλ, ψ is a first order formula with one free variable, and there exists B ⊆ Hλ+ such that (Hλ+; ε, B) $(H_{\lambda +};\in ,B)\vDash \psi [Q]$ . A cardinal λ is $\Sigma _{1}^{2}$ indescribable just in case that for every $\Sigma _{1}^{2}$ truth 〈Q, ψ〉 for λ, there exists $\overline{\lambda}<\lambda $ so that $\overline{\lambda}$ is a cardinal and $\langle Q\cap H_{\overline{\lambda}},\psi \rangle $ is a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  42
    A Note on Derivability Conditions.Taishi Kurahashi - 2020 - Journal of Symbolic Logic 85 (3):1224-1253.
    We investigate relationships between versions of derivability conditions for provability predicates. We show several implications and non-implications between the conditions, and we discuss unprovability of consistency statements induced by derivability conditions. First, we classify already known versions of the second incompleteness theorem, and exhibit some new sets of conditions which are sufficient for unprovability of Hilbert–Bernays’ consistency statement. Secondly, we improve Buchholz’s schematic proof of provable$\Sigma_1$-completeness. Then among other things, we show that Hilbert–Bernays’ conditions and Löb’s conditions are mutually incomparable. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  43. [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
     
    Export citation  
     
    Bookmark   219 citations  
  44.  47
    Index Sets for Classes of High Rank Structures.W. Calvert, E. Fokina, S. S. Goncharov, J. F. Knight, O. Kudinov, A. S. Morozov & V. Puzarenko - 2007 - Journal of Symbolic Logic 72 (4):1418 - 1432.
    This paper calculates, in a precise way, the complexity of the index sets for three classes of computable structures: the class $K_{\omega _{1}^{\mathit{CK}}}$ of structures of Scott rank $\omega _{1}^{\mathit{CK}}$ , the class $K_{\omega _{1}^{\mathit{CK}}+1}$ of structures of Scott rank $\omega _{1}^{\mathit{CK}}+1$ , and the class K of all structures of non-computable Scott rank. We show that I(K) is m-complete $\Sigma _{1}^{1},\,I(K_{\omega _{1}^{\mathit{CK}}})$ is m-complete $\Pi _{2}^{0}$ relative to Kleen's O, and $I(K_{\omega _{1}^{\mathit{CK}}+1})$ is m-complete $\Sigma _{2}^{0}$ relative to O.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  20
    Aronszajn tree preservation and bounded forcing axioms.Gunter Fuchs - 2021 - Journal of Symbolic Logic 86 (1):293-315.
    I investigate the relationships between three hierarchies of reflection principles for a forcing class $\Gamma $ : the hierarchy of bounded forcing axioms, of $\Sigma ^1_1$ -absoluteness, and of Aronszajn tree preservation principles. The latter principle at level $\kappa $ says that whenever T is a tree of height $\omega _1$ and width $\kappa $ that does not have a branch of order type $\omega _1$, and whenever ${\mathord {\mathbb P}}$ is a forcing notion in $\Gamma $, then it is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  25
    Automatic and polynomial-time algebraic structures.Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov & Keng Meng Ng - 2019 - Journal of Symbolic Logic 84 (4):1630-1669.
    A structure is automatic if its domain, functions, and relations are all regular languages. Using the fact that every automatic structure is decidable, in the literature many decision problems have been solved by giving an automatic presentation of a particular structure. Khoussainov and Nerode asked whether there is some way to tell whether a structure has, or does not have, an automatic presentation. We answer this question by showing that the set of Turing machines that represent automata-presentable structures is ${\rm{\Sigma (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  47. Projective absoluteness for Sacks forcing.Daisuke Ikegami - 2009 - Archive for Mathematical Logic 48 (7):679-690.
    We show that ${{\bf \Sigma}^1_3}$ -absoluteness for Sacks forcing is equivalent to the non-existence of a ${{\bf \Delta}^1_2}$ Bernstein set. We also show that Sacks forcing is the weakest forcing notion among all of the preorders that add a new real with respect to ${{\bf \Sigma}^1_3}$ forcing absoluteness.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  9
    A comparison of various analytic choice principles.Paul-Elliot Anglès D’Auriac & Takayuki Kihara - 2021 - Journal of Symbolic Logic 86 (4):1452-1485.
    We investigate computability theoretic and descriptive set theoretic contents of various kinds of analytic choice principles by performing a detailed analysis of the Medvedev lattice of $\Sigma ^1_1$ -closed sets. Among others, we solve an open problem on the Weihrauch degree of the parallelization of the $\Sigma ^1_1$ -choice principle on the integers. Harrington’s unpublished result on a jump hierarchy along a pseudo-well-ordering plays a key role in solving this problem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  49.  28
    On isomorphism classes of computably enumerable equivalence relations.Uri Andrews & Serikzhan A. Badaev - 2020 - Journal of Symbolic Logic 85 (1):61-86.
    We examine how degrees of computably enumerable equivalence relations under computable reduction break down into isomorphism classes. Two ceers are isomorphic if there is a computable permutation of ω which reduces one to the other. As a method of focusing on nontrivial differences in isomorphism classes, we give special attention to weakly precomplete ceers. For any degree, we consider the number of isomorphism types contained in the degree and the number of isomorphism types of weakly precomplete ceers contained in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  50.  73
    Random reals, the rainbow Ramsey theorem, and arithmetic conservation.Chris J. Conidis & Theodore A. Slaman - 2013 - Journal of Symbolic Logic 78 (1):195-206.
    We investigate the question “To what extent can random reals be used as a tool to establish number theoretic facts?” Let $\text{2-\textit{RAN\/}}$ be the principle that for every real $X$ there is a real $R$ which is 2-random relative to $X$. In Section 2, we observe that the arguments of Csima and Mileti [3] can be implemented in the base theory $\text{\textit{RCA}}_0$ and so $\text{\textit{RCA}}_0+\text{2-\textit{RAN\/}}$ implies the Rainbow Ramsey Theorem. In Section 3, we show that the Rainbow Ramsey Theorem is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 191