Results for ' computability'

976 found
Order:
See also
  1.  6
    A Model for Proustian Decay.Computer Lars - 2024 - Nordic Journal of Aesthetics 33 (67).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. (1 other version)Computability and Logic.G. S. Boolos & R. C. Jeffrey - 1977 - British Journal for the Philosophy of Science 28 (1):95-95.
     
    Export citation  
     
    Bookmark   120 citations  
  3.  10
    Computer Science Logic: 11th International Workshop, CSL'97, Annual Conference of the EACSL, Aarhus, Denmark, August 23-29, 1997, Selected Papers.M. Nielsen, Wolfgang Thomas & European Association for Computer Science Logic - 1998 - Springer Verlag.
    This book constitutes the strictly refereed post-workshop proceedings of the 11th International Workshop on Computer Science Logic, CSL '97, held as the 1997 Annual Conference of the European Association on Computer Science Logic, EACSL, in Aarhus, Denmark, in August 1997. The volume presents 26 revised full papers selected after two rounds of refereeing from initially 92 submissions; also included are four invited papers. The book addresses all current aspects of computer science logics and its applications and thus presents the state (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  39
    Computability by means of effectively definable schemes and definability via enumerations.Ivan N. Soskov - 1990 - Archive for Mathematical Logic 29 (3):187-200.
  5.  30
    Embeddings between well-orderings: Computability-theoretic reductions.Jun Le Goh - 2020 - Annals of Pure and Applied Logic 171 (6):102789.
    We study the computational content of various theorems with reverse mathematical strength around Arithmetical Transfinite Recursion (ATR_0) from the point of view of computability-theoretic reducibilities, in particular Weihrauch reducibility. Our main result states that it is equally hard to construct an embedding between two given well-orderings, as it is to construct a Turing jump hierarchy on a given well-ordering. This answers a question of Marcone. We obtain a similar result for Fraïssé's conjecture restricted to well-orderings.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner DePauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), The Foundational Debate: Complexity and Constructivity in Mathematics and Physics. Dordrecht, Boston and London: Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  7. (1 other version)Computability and λ-definability.A. M. Turing - 1937 - Journal of Symbolic Logic 2 (4):153-163.
  8. Randomness and Recursive Enumerability.Siam J. Comput - unknown
    One recursively enumerable real α dominates another one β if there are nondecreasing recursive sequences of rational numbers (a[n] : n ∈ ω) approximating α and (b[n] : n ∈ ω) approximating β and a positive constant C such that for all n, C(α − a[n]) ≥ (β − b[n]). See [R. M. Solovay, Draft of a Paper (or Series of Papers) on Chaitin’s Work, manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1974, p. 215] and [G. J. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  9.  27
    Computability and the game of cops and robbers on graphs.Rachel D. Stahl - 2022 - Archive for Mathematical Logic 61 (3):373-397.
    Several results about the game of cops and robbers on infinite graphs are analyzed from the perspective of computability theory. Computable robber-win graphs are constructed with the property that no computable robber strategy is a winning strategy, and such that for an arbitrary computable ordinal \, any winning strategy has complexity at least \}\). Symmetrically, computable cop-win graphs are constructed with the property that no computable cop strategy is a winning strategy. Locally finite infinite trees and graphs are explored. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Computability and human symbolic output.Jason Megill & Tim Melvin - 2014 - Logic and Logical Philosophy 23 (4):391-401.
    This paper concerns “human symbolic output,” or strings of characters produced by humans in our various symbolic systems; e.g., sentences in a natural language, mathematical propositions, and so on. One can form a set that consists of all of the strings of characters that have been produced by at least one human up to any given moment in human history. We argue that at any particular moment in human history, even at moments in the distant future, this set is finite. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11. The fortieth annual lecture series 1999-2000.Brain Computations & an Inevitable Conflict - 2000 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 31:199-200.
  12. Computability theory and linear orders.Rod Downey - 1998 - In I︠U︡riĭ Leonidovich Ershov (ed.), Handbook of recursive mathematics. New York: Elsevier. pp. 138--823.
     
    Export citation  
     
    Bookmark   13 citations  
  13.  55
    Computability Theory: An Introduction to Recursion Theory.Herbert B. Enderton - 2010 - Academic Press.
    Machine generated contents note: 1. The Computability Concept;2. General Recursive Functions;3. Programs and Machines;4. Recursive Enumerability;5. Connections to Logic;6. Degrees of Unsolvability;7. Polynomial-Time Computability;Appendix: Mathspeak;Appendix: Countability;Appendix: Decadic Notation;.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Computability, Notation, and de re Knowledge of Numbers.Stewart Shapiro, Eric Snyder & Richard Samuels - 2022 - Philosophies 1 (7):20.
    Saul Kripke once noted that there is a tight connection between computation and de re knowledge of whatever the computation acts upon. For example, the Euclidean algorithm can produce knowledge of which number is the greatest common divisor of two numbers. Arguably, algorithms operate directly on syntactic items, such as strings, and on numbers and the like only via how the numbers are represented. So we broach matters of notation. The purpose of this article is to explore the relationship between (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Computability theory and differential geometry.Robert I. Soare - 2004 - Bulletin of Symbolic Logic 10 (4):457-486.
    Let M be a smooth, compact manifold of dimension n ≥ 5 and sectional curvature | K | ≤ 1. Let Met (M) = Riem(M)/Diff(M) be the space of Riemannian metrics on M modulo isometries. Nabutovsky and Weinberger studied the connected components of sublevel sets (and local minima) for certain functions on Met (M) such as the diameter. They showed that for every Turing machine T e , e ∈ ω, there is a sequence (uniformly effective in e) of homology (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  16. Computability Theory.Barry Cooper - 2010 - Journal of the Indian Council of Philosophical Research 27 (1).
     
    Export citation  
     
    Bookmark   12 citations  
  17. Randomness and computability: Open questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
    It is time for a new paper about open questions in the currently very active area of randomness and computability. Ambos-Spies and Kučera presented such a paper in 1999 [1]. All the question in it have been solved, except for one: is KL-randomness different from Martin-Löf randomness? This question is discussed in Section 6.Not all the questions are necessarily hard—some simply have not been tried seriously. When we think a question is a major one, and therefore likely to be (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  18.  73
    Computability and cognition.Elliott Sober - 1978 - Synthese 39 (3):383 - 399.
    According to information processing models of cognition, such as Chomsky's, the set of well-formed formulae of any natural language must be recursively enumerable (RE), otherwise, human learning language is impossible. I argue that there is nothing unlearnable about languages that are not RE. Insofar as natural languages turn out to be RE, this is to be accounted for on grounds of simplicity and not by appeal to the mistaken claim that nonRE languages are ruled out a priori. A consequence of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  19.  16
    On notions of computability-theoretic reduction between Π21 principles.Denis R. Hirschfeldt & Carl G. Jockusch - 2016 - Journal of Mathematical Logic 16 (1):1650002.
    Several notions of computability-theoretic reducibility between [Formula: see text] principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each [Formula: see text], there is an instance of RT[Formula: see text] all of whose solutions have PA degree over [Formula: see text] and use this to show that König’s Lemma lies strictly between RT[Formula: see text] and RT[Formula: (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  20.  54
    Computability of Recursive Functions.J. C. Shepherdson & H. E. Sturgis - 1967 - Journal of Symbolic Logic 32 (1):122-123.
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  21.  12
    Computability Theory.Valentina Harizanov, Keshav Srinivasan & Dario Verta - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 1933-1961.
    Computability theory is the mathematical theory of algorithms, which explores the power and limitations of computation. Classical computability theory formalized the intuitive notion of an algorithm and provided a theoretical basis for digital computers. It also demonstrated the limitations of algorithms and showed that most sets of natural numbers and the problems they encode are not decidable (Turing computable). Important results of modern computability theory include the classification of the computational difficulty of sets and problems. Arithmetical and (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  22.  18
    (1 other version)Computability, Proof, and Open-Texture.Stewart Shapiro - 2006 - In Adam Olszewski, Jan Wolenski & Robert Janusz (eds.), Church's Thesis After 70 Years. Ontos Verlag. pp. 420-455.
  23.  69
    Human-Effective Computability†.Marianna Antonutti Marfori & Leon Horsten - 2018 - Philosophia Mathematica 27 (1):61-87.
    We analyse Kreisel’s notion of human-effective computability. Like Kreisel, we relate this notion to a concept of informal provability, but we disagree with Kreisel about the precise way in which this is best done. The resulting two different ways of analysing human-effective computability give rise to two different variants of Church’s thesis. These are both investigated by relating them to transfinite progressions of formal theories in the sense of Feferman.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  70
    Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  25.  19
    Recent Computability Models Inspired from Biology: DNA and Membrane Computing.Gheorge Paun & Mario de Jesús Pérez Jiménez - 2003 - Theoria 18 (46):71-84.
  26.  24
    The dependence of computability on numerical notations.Ethan Brauer - 2021 - Synthese 198 (11):10485-10511.
    Which function is computed by a Turing machine will depend on how the symbols it manipulates are interpreted. Further, by invoking bizarre systems of notation it is easy to define Turing machines that compute textbook examples of uncomputable functions, such as the solution to the decision problem for first-order logic. Thus, the distinction between computable and uncomputable functions depends on the system of notation used. This raises the question: which systems of notation are the relevant ones for determining whether a (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27. Computability of Solutions of the Korteweg-de Vries Equation.N. Zhong, B.-Y. Zhang & W. Gay - 2001 - Mathematical Logic Quarterly 47 (1):93-110.
     
    Export citation  
     
    Bookmark  
  28.  79
    Computability, consciousness, and algorithms.Robert Wilensky - 1990 - Behavioral and Brain Sciences 13 (4):690-691.
  29.  17
    Computability. Computable Functions, Logic, and the Foundations of Mathematics. Second Edition of the Preceding.Carlos Augusto Di Prisco, Richard L. Epstein & Walter A. Carnielli - 2002 - Bulletin of Symbolic Logic 8 (1):101.
  30.  32
    Lattice representations for computability theory.Peter A. Fejer - 1998 - Annals of Pure and Applied Logic 94 (1-3):53-74.
    Lattice representations are an important tool for computability theorists when they embed nondistributive lattices into degree-theoretic structures. In this expository paper, we present the basic definitions and results about lattice representations needed by computability theorists. We define lattice representations both from the lattice-theoretic and computability-theoretic points of view, give examples and show the connection between the two types of representations, discuss some of the known theorems on the existence of lattice representations that are of interest to (...) theorists, and give a simple example of the use of lattice representations in an embedding result. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  31.  63
    The veblen functions for computability theorists.Alberto Marcone & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (2):575 - 602.
    We study the computability-theoretic complexity and proof-theoretic strength of the following statements: (1) "If X is a well-ordering, then so is ε X ", and (2) "If X is a well-ordering, then so is φ(α, X)", where α is a fixed computable ordinal and φ represents the two-placed Veblen function. For the former statement, we show that ω iterations of the Turing jump are necessary in the proof and that the statement is equivalent to ${\mathrm{A}\mathrm{C}\mathrm{A}}_{0}^{+}$ over RCA₀. To prove (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  32. Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  39
    Computability. Computable Functions, Logic, and the Foundations of Mathematics.Richard L. Epstein & Walter A. Carnielli - 2002 - Bulletin of Symbolic Logic 8 (1):101-104.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  34.  27
    On the computability of fractal dimensions and Hausdorff measure.Ker-I. Ko - 1998 - Annals of Pure and Applied Logic 93 (1-3):195-216.
    It is shown that there exist subsets A and B of the real line which are recursively constructible such that A has a nonrecursive Hausdorff dimension and B has a recursive Hausdorff dimension but has a finite, nonrecursive Hausdorff measure. It is also shown that there exists a polynomial-time computable curve on the two-dimensional plane that has a nonrecursive Hausdorff dimension between 1 and 2. Computability of Julia sets of computable functions on the real line is investigated. It is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  65
    Partition theorems and computability theory.Joseph R. Mileti - 2005 - Bulletin of Symbolic Logic 11 (3):411-427.
    The connections between mathematical logic and combinatorics have a rich history. This paper focuses on one aspect of this relationship: understanding the strength, measured using the tools of computability theory and reverse mathematics, of various partition theorems. To set the stage, recall two of the most fundamental combinatorial principles, König's Lemma and Ramsey's Theorem. We denote the set of natural numbers by ω and the set of finite sequences of natural numbers by ω<ω. We also identify each n ∈ (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  36. Computability Theory and Ontological Emergence.Jon Cogburn & Mark Silcox - 2011 - American Philosophical Quarterly 48 (1):63.
    It is often helpful in metaphysics to reflect upon the principles that govern how existence claims are made in logic and mathematics. Consider, for example, the different ways in which mathematicians construct inductive definitions. In order to provide an inductive definition of a class of mathematical entities, one must first define a base class and then stipulate further conditions for inclusion by reference to the properties of members of the base class. These conditions can be deflationary, so that the target (...)
     
    Export citation  
     
    Bookmark   1 citation  
  37.  75
    Copeland and Proudfoot on computability.Michael Rescorla - 2012 - Studies in History and Philosophy of Science Part A 43 (1):199-202.
    Many philosophers contend that Turing’s work provides a conceptual analysis of numerical computability. In (Rescorla, 2007), I dissented. I argued that the problem of deviant notations stymies existing attempts at conceptual analysis. Copeland and Proudfoot respond to my critique. I argue that their putative solution does not succeed. We are still awaiting a genuine conceptual analysis.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  38.  46
    Introduction to computability logic.Giorgi Japaridze - 2003 - Annals of Pure and Applied Logic 123 (1-3):1-99.
    This work is an attempt to lay foundations for a theory of interactive computation and bring logic and theory of computing closer together. It semantically introduces a logic of computability and sets a program for studying various aspects of that logic. The intuitive notion of computational problems is formalized as a certain new, procedural-rule-free sort of games between the machine and the environment, and computability is understood as existence of an interactive Turing machine that wins the game against (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  39.  73
    Strong Computability and Variants of the Uniform Halting Problem.Gabor T. Herman - 1971 - Mathematical Logic Quarterly 17 (1):115-131.
  40.  21
    Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Computability as a Physical Modality.Tamara Horowitz - forthcoming - Unpublished Ms Held in the Casimir Lewy Library, Cambridge.
     
    Export citation  
     
    Bookmark  
  42.  81
    Abstract computability and invariant definability.Yiannis N. Moschovakis - 1969 - Journal of Symbolic Logic 34 (4):605-633.
    By language we understand a lower predicate calculus with identity and (perhaps) relation and function symbols. It is convenient to allow for more than one sort of variable. Now each individual constant (if there are any) is of a specified sort, the formal expressions R(t1, … tn), f(t1,…, tn) are well formed only if the terms t1, …, tn are of specified sorts determined by the relation symbol R and the function symbol f, and the term f(t1, …, tn) (if (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43.  29
    The intuitionistic fragment of computability logic at the propositional level.Giorgi Japaridze - 2007 - Annals of Pure and Applied Logic 147 (3):187-227.
    This paper presents a soundness and completeness proof for propositional intuitionistic calculus with respect to the semantics of computability logic. The latter interprets formulas as interactive computational problems, formalized as games between a machine and its environment. Intuitionistic implication is understood as algorithmic reduction in the weakest possible — and hence most natural — sense, disjunction and conjunction as deterministic-choice combinations of problems , and “absurd” as a computational problem of universal strength.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  44. Paul M. kjeldergaard.Pittsburgh Computations Centers - 1968 - In T. Dixon & Deryck Horton (eds.), Verbal Behavior and General Behavior Theory. Prentice-Hall.
    No categories
     
    Export citation  
     
    Bookmark  
  45. Predictability, Computability and Spacetime.Mark Hogarth - 1996 - Dissertation, Cambridge University
  46.  85
    Reverse mathematics, computability, and partitions of trees.Jennifer Chubb, Jeffry L. Hirst & Timothy H. McNicholl - 2009 - Journal of Symbolic Logic 74 (1):201-215.
    We examine the reverse mathematics and computability theory of a form of Ramsey's theorem in which the linear n-tuples of a binary tree are colored.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  47.  38
    Computability in Europe 2011.Sam Buss, Benedikt Löwe, Dag Normann & Ivan Soskov - 2013 - Annals of Pure and Applied Logic 164 (5):509-510.
  48.  22
    Hector freytes, Antonio ledda, Giuseppe sergioli and.Roberto Giuntini & Probabilistic Logics in Quantum Computation - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer Verlag. pp. 49.
    Direct download  
     
    Export citation  
     
    Bookmark  
  49.  41
    Computability in Europe 2008.Arnold Beckmann, Costas Dimitracopoulos & Benedikt Löwe - 2010 - Archive for Mathematical Logic 49 (2):119-121.
  50.  45
    Logic, Computability, and Randomness.Verónica Becher - 2005 - Bulletin of Symbolic Logic 11 (4):557-557.
1 — 50 / 976