Results for ' bi-intuitionistic logic'

970 found
Order:
  1.  78
    Bi-Simulating in Bi-Intuitionistic Logic.Guillermo Badia - 2016 - Studia Logica 104 (5):1037-1050.
    Bi-intuitionistic logic is the result of adding the dual of intuitionistic implication to intuitionistic logic. In this note, we characterize the expressive power of this logic by showing that the first order formulas equivalent to translations of bi-intuitionistic propositional formulas are exactly those preserved under bi-intuitionistic directed bisimulations. The proof technique is originally due to Lindstrom and, in contrast to the most common proofs of this kind of result, it does not use (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  2.  37
    Wansing's bi-intuitionistic logic: semantics, extension and unilateralisation.Juan C. Agudelo-Agudelo - 2024 - Journal of Applied Non-Classical Logics 34 (1):31-54.
    The well-known algebraic semantics and topological semantics for intuitionistic logic (Int) is here extended to Wansing's bi-intuitionistic logic (2Int). The logic 2Int is also characterised by a quasi-twist structure semantics, which leads to an alternative topological characterisation of 2Int. Later, notions of Fregean negation and of unilateralisation are proposed. The logic 2Int is extended with a ‘Fregean negation’ connective ∼, obtaining 2Int∼, and it is showed that the logic N4⋆ (an extension of Nelson's (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3. Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents.Tim Lyon, Alwen Tiu, Rajeev Gore & Ranald Clouston - 2020 - In Maribel Fernandez & Anca Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). pp. 1-16.
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  4. A cut-free sequent calculus for the bi-intuitionistic logic 2Int.Sara Ayhan - manuscript
    The purpose of this paper is to introduce a bi-intuitionistic sequent calculus and to give proofs of admissibility for its structural rules. The calculus I will present, called SC2Int, is a sequent calculus for the bi-intuitionistic logic 2Int, which Wansing presents in [2016a]. There he also gives a natural deduction system for this logic, N2Int, to which SC2Int is equivalent in terms of what is derivable. What is important is that these calculi represent a kind of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Combining Derivations and Refutations for Cut-free Completeness in Bi-intuitionistic Logic.Linda Postniece - unknown
    Bi-intuitionistic logic is the union of intuitionistic and dual intuitionistic logic, and was introduced by Rauszer as a Hilbert calculus with algebraic and Kripke semantics. But her subsequent ‘cut-free’ sequent calculus has recently been shown to fail cut-elimination. We present a new cut-free sequent calculus for bi-intuitionistic logic, and prove it sound and complete with respect to its Kripke semantics. Ensuring completeness is complicated by the interaction between intuitionistic implication and dual (...) exclusion, similarly to future and past modalities in tense logic. Our calculus handles this interaction using derivations and refutations as first class citizens. We employ extended sequents which pass information from premises to conclusions using variables instantiated at the leaves of refutations, and rules which compose certain refutations and derivations to form derivations. Automated deduction using terminating backward search is also possible, although this is not our main purpose. (shrink)
     
    Export citation  
     
    Bookmark   3 citations  
  6.  70
    Analytic Cut and Interpolation for Bi-Intuitionistic Logic.Tomasz Kowalski & Hiroakira Ono - 2017 - Review of Symbolic Logic 10 (2):259-283.
    We prove that certain natural sequent systems for bi-intuitionistic logic have the analytic cut property. In the process we show that the (global) subformula property implies the (local) analytic cut property, thereby demonstrating their equivalence. Applying a version of Maehara technique modified in several ways, we prove that bi-intuitionistic logic enjoys the classical Craig interpolation property and Maximova variable separation property; its Halldén completeness follows.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  7.  57
    Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents.Rajeev Goré, Linda Postniece & Alwen Tiu - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 43-66.
    We propose a new sequent calculus for bi intuitionistic logic which sits somewhere between display calculi and traditional sequent calculi by using nested sequents. Our calculus enjoys a simple (purely syntactic) cut elimination proof as do display calculi. But it has an easily derivable variant calculus which is amenable to automated proof search as are (some) traditional sequent calculi. We first present the initial calculus and its cut elimination proof. We then present the derived calculus, and then present (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  34
    Bi-intuitionistic implication structures.Daniel Skurt - 2018 - Journal of Applied Non-Classical Logics 28 (1):20-34.
    In this contribution, we will present some results concerning the connectives of bi-intuitionistic logic in the setting of Arnold Koslow’s implication structures. Furthermore, we will present soundness and completeness results of Koslow’s implication structures with respect to bi-intuitionistic logic.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  19
    A Remark on Maksimova's Variable Separation Property in Super-Bi-Intuitionistic Logics.Guillermo Badia - 2017 - Australasian Journal of Logic 14 (1).
    We provide a sucient frame-theoretic condition for a super bi-intuitionistic logic to have Maksimova's variable separation property. We conclude that bi-intuitionistic logic enjoys the property. Furthermore, we offer an algebraic characterization of the super-bi-intuitionistic logics with Maksimova's property.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  10
    Craig Interpolation Theorem Fails in Bi-Intuitionistic Predicate Logic.Grigory K. Olkhovikov & Guillermo Badia - 2024 - Review of Symbolic Logic 17 (2):611-633.
    In this article we show that bi-intuitionistic predicate logic lacks the Craig Interpolation Property. We proceed by adapting the counterexample given by Mints, Olkhovikov and Urquhart for intuitionistic predicate logic with constant domains [13]. More precisely, we show that there is a valid implication $\phi \rightarrow \psi $ with no interpolant. Importantly, this result does not contradict the unfortunately named ‘Craig interpolation’ theorem established by Rauszer in [24] since that article is about the property more correctly (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  47
    Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant.Norihiro Kamide, Yaroslav Shramko & Heinrich Wansing - 2017 - Studia Logica 105 (6):1193-1219.
    In this paper, bi-intuitionistic multilattice logic, which is a combination of multilattice logic and the bi-intuitionistic logic also known as Heyting–Brouwer logic, is introduced as a Gentzen-type sequent calculus. A Kripke semantics is developed for this logic, and the completeness theorem with respect to this semantics is proved via theorems for embedding this logic into bi-intuitionistic logic. The logic proposed is an extension of first-degree entailment logic and can (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  12. A cut-free sequent calculus for bi-intuitionistic logic.Rajeev Gore - manuscript
  13. On an Intuitionistic Logic for Pragmatics.Gianluigi Bellin, Massimiliano Carrara & Daniele Chiffi - 2018 - Journal of Logic and Computation 50 (28):935–966..
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justi cations and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  14.  13
    Algebraic Completeness of Connexive and Bi-Intuitionistic Multilattice Logics.Yaroslav Petrukhin - 2024 - Journal of Logic, Language and Information 33 (2):179-196.
    In this paper, we introduce the notions of connexive and bi-intuitionistic multilattices and develop on their base the algebraic semantics for Kamide, Shramko, and Wansing’s connexive and bi-intuitionistic multilattice logics which were previously known in the form of sequent calculi and Kripke semantics. We prove that these logics are sound and complete with respect to the presented algebraic structures.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  80
    Pragmatic and dialogic interpretations of bi-intuitionism. Part 1.Gianluigi Bellin, Massimiliano Carrara, Daniele Chiffi & Alessandro Menti - 2014 - Logic and Logical Philosophy 23 (4):449-480.
    We consider a “polarized” version of bi-intuitionistic logic [5, 2, 6, 4] as a logic of assertions and hypotheses and show that it supports a “rich proof theory” and an interesting categorical interpretation, unlike the standard approach of C. Rauszer’s Heyting-Brouwer logic [28, 29], whose categorical models are all partial orders by Crolard’s theorem [8]. We show that P.A. Melliès notion of chirality [21, 22] appears as the right mathematical representation of the mirror symmetry between the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  17
    Cut-elimination and Proof Search for Bi-Intuitionistic Tense Logic.Rajeev Goré, Linda Postniece & Alwen Tiu - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 156-177.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  28
    On Synonymy in Proof-Theoretic Semantics: The Case of \(\mathtt{2Int}\).Sara Ayhan & Heinrich Wansing - 2023 - Bulletin of the Section of Logic 52 (2):187-237.
    We consider an approach to propositional synonymy in proof-theoretic semantics that is defined with respect to a bilateral G3-style sequent calculus \(\mathtt{SC2Int}\) for the bi-intuitionistic logic \(\mathtt{2Int}\). A distinctive feature of \(\mathtt{SC2Int}\) is that it makes use of two kind of sequents, one representing proofs, the other representing refutations. The structural rules of \(\mathtt{SC2Int}\), in particular its cut rules, are shown to be admissible. Next, interaction rules are defined that allow transitions from proofs to refutations, and vice versa, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  41
    Intuitionistic Propositional Logic with Galois Negations.Minghui Ma & Guiying Li - 2023 - Studia Logica 111 (1):21-56.
    Intuitionistic propositional logic with Galois negations ( \(\mathsf {IGN}\) ) is introduced. Heyting algebras with Galois negations are obtained from Heyting algebras by adding the Galois pair \((\lnot,{\sim })\) and dual Galois pair \((\dot{\lnot },\dot{\sim })\) of negations. Discrete duality between GN-frames and algebras as well as the relational semantics for \(\mathsf {IGN}\) are developed. A Hilbert-style axiomatic system \(\mathsf {HN}\) is given for \(\mathsf {IGN}\), and Galois negation logics are defined as extensions of \(\mathsf {IGN}\). We give (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  31
    Errata Corrige to “Pragmatic and dialogic interpretation of bi-intuitionism. Part I”.Gianluigi Bellin, Massimiliano Carrara, Daniele Chiffi & Alessandro Menti - 2016 - Logic and Logical Philosophy 25 (2).
  20.  23
    Pragmatic and dialogic interpretations of bi-intuitionism. Part II.Gianluigi Bellin, Massimiliano Carrara, Daniele Chiffi & Alessandro Menti - 2014 - Logic and Logical Philosophy.
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  52
    On intuitionistic modal and tense logics and their classical companion logics: Topological semantics and bisimulations.Jennifer M. Davoren - 2010 - Annals of Pure and Applied Logic 161 (3):349-367.
    We take the well-known intuitionistic modal logic of Fischer Servi with semantics in bi-relational Kripke frames, and give the natural extension to topological Kripke frames. Fischer Servi’s two interaction conditions relating the intuitionistic pre-order with the modal accessibility relation generalize to the requirement that the relation and its inverse be lower semi-continuous with respect to the topology. We then investigate the notion of topological bisimulation relations between topological Kripke frames, as introduced by Aiello and van Benthem, and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22. A Framework for Intuitionistic Grammar Logics.Tim Lyon - 2006 - In O. Stock & M. Schaerf (eds.), Lecture Notes In Computer Science. Springer Verlag. pp. 495-503.
    We generalize intuitionistic tense logics to the multi-modal case by placing grammar logics on an intuitionistic footing. We provide axiomatizations for a class of base intuitionistic grammar logics as well as provide axiomatizations for extensions with combinations of seriality axioms and what we call "intuitionistic path axioms". We show that each axiomatization is sound and complete with completeness being shown via a typical canonical model construction.
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  62
    Modal logics with Belnapian truth values.Serge P. Odintsov & Heinrich Wansing - 2010 - Journal of Applied Non-Classical Logics 20 (3):279-304.
    Various four- and three-valued modal propositional logics are studied. The basic systems are modal extensions BK and BS4 of Belnap and Dunn's four-valued logic of firstdegree entailment. Three-valued extensions of BK and BS4 are considered as well. These logics are introduced semantically by means of relational models with two distinct evaluation relations, one for verification and the other for falsification. Axiom systems are defined and shown to be sound and complete with respect to the relational semantics and with respect (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  24. Reprint of: A more general general proof theory.Heinrich Wansing - 2017 - Journal of Applied Logic 25:23-46.
    In this paper it is suggested to generalize our understanding of general (structural) proof theory and to consider it as a general theory of two kinds of derivations, namely proofs and dual proofs. The proposal is substantiated by (i) considerations on assertion, denial, and bi-lateralism, (ii) remarks on compositionality in proof-theoretic semantics, and (iii) comments on falsification and co-implication. The main formal result of the paper is a normal form theorem for the natural deduction proof system N2Int of the bi- (...) logic 2Int. The proof makes use of the faithful embedding of 2Int into intuitionistic logic with respect to validity and shows that conversions of dual proofs can be sidestepped. (shrink)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Meaning and identity of proofs in a bilateralist setting: A two-sorted typed lambda-calculus for proofs and refutations.Sara Ayhan - forthcoming - Journal of Logic and Computation.
    In this paper I will develop a lambda-term calculus, lambda-2Int, for a bi-intuitionistic logic and discuss its implications for the notions of sense and denotation of derivations in a bilateralist setting. Thus, I will use the Curry-Howard correspondence, which has been well-established between the simply typed lambda-calculus and natural deduction systems for intuitionistic logic, and apply it to a bilateralist proof system displaying two derivability relations, one for proving and one for refuting. The basis will be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  88
    The logic of bunched implications.Peter W. O'Hearn & David J. Pym - 1999 - Bulletin of Symbolic Logic 5 (2):215-244.
    We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live side-by-side. The propositional version of BI arises from an analysis of the proof-theoretic relationship between conjunction and implication; it can be viewed as a merging of intuitionistic logic and multiplicative intuitionistic linear logic. The naturality of BI can be seen categorically: models of propositional BI's proofs are given by bicartesian doubly closed categories, i.e., categories which freely (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  27.  40
    The Distributivity on Bi-Approximation Semantics.Tomoyuki Suzuki - 2016 - Notre Dame Journal of Formal Logic 57 (3):411-430.
    In this paper, we give a possible characterization of the distributivity on bi-approximation semantics. To this end, we introduce new notions of special elements on polarities and show that the distributivity is first-order definable on bi-approximation semantics. In addition, we investigate the dual representation of those structures and compare them with bi-approximation semantics for intuitionistic logic. We also discuss that two different methods to validate the distributivity—by the splitters and by the adjointness—can be explicated with the help of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28. From if to bi.Samson Abramsky & Jouko Väänänen - 2009 - Synthese 167 (2):207 - 230.
    We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Väänänen, and their compositional semantics due to Hodges. We show how Hodges’ semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  29.  21
    A new model construction by making a detour via intuitionistic theories IV: A closer connection between KPω and BI.Kentaro Sato - 2024 - Annals of Pure and Applied Logic 175 (7):103422.
  30.  15
    Modal logic, fundamentally.Wesley H. Holliday - 2024 - In Agata Ciabattoni, David Gabelaia & Igor Sedlár (eds.), Advances in Modal Logic, Vol. 15. London: College Publications.
    Non-classical generalizations of classical modal logic have been developed in the contexts of constructive mathematics and natural language semantics. In this paper, we discuss a general approach to the semantics of non-classical modal logics via algebraic representation theorems. We begin with complete lattices L equipped with an antitone operation ¬ sending 1 to 0, a completely multiplicative operation ◻, and a completely additive operation ◊. Such lattice expansions can be represented by means of a set X together with binary (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  31.  11
    Substructural Negations as Normal Modal Operators.Heinrich Wansing - 2024 - In Yale Weiss & Romina Birman (eds.), Saul Kripke on Modal Logic. Cham: Springer. pp. 365-388.
    A theory of substructural negations as impossibility and as unnecessity based on bi-intuitionistic logic, also known as Heyting-Brouwer logic, has been developed by Takuro Onishi. He notes two problems for that theory and offers the identification of the two negations as a solution to both problems. The first problem is the lack of a structural rule corresponding with double negation elimination for negation as impossibility, DNE, and the second problem is a lack of correspondence between certain sequents (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  52
    Popper's Notion of Duality and His Theory of Negations.David Binder & Thomas Piecha - 2017 - History and Philosophy of Logic 38 (2):154-189.
    Karl Popper developed a theory of deductive logic in the late 1940s. In his approach, logic is a metalinguistic theory of deducibility relations that are based on certain purely structural rules. Logical constants are then characterized in terms of deducibility relations. Characterizations of this kind are also called inferential definitions by Popper. In this paper, we expound his theory and elaborate some of his ideas and results that in some cases were only sketched by him. Our focus is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33.  26
    Semantical Analysis of the Logic of Bunched Implications.Alexander V. Gheorghiu & David J. Pym - 2023 - Studia Logica 111 (4):525-571.
    We give a novel approach to proving soundness and completeness for a logic (henceforth: the object-logic) that bypasses truth-in-a-model to work directly with validity. Instead of working with specific worlds in specific models, we reason with eigenworlds (i.e., generic representatives of worlds) in an arbitrary model. This reasoning is captured by a sequent calculus for a _meta_-logic (in this case, first-order classical logic) expressive enough to capture the semantics of the object-logic. Essentially, one has a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  69
    Semi-intuitionistic Logic.Juan Manuel Cornejo - 2011 - Studia Logica 98 (1-2):9-25.
    The purpose of this paper is to define a new logic $${\mathcal {SI}}$$ called semi-intuitionistic logic such that the semi-Heyting algebras introduced in [ 4 ] by Sankappanavar are the semantics for $${\mathcal {SI}}$$ . Besides, the intuitionistic logic will be an axiomatic extension of $${\mathcal {SI}}$$.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  35.  51
    Intuitionistic Logic according to Dijkstra's Calculus of Equational Deduction.Jaime Bohórquez V. - 2008 - Notre Dame Journal of Formal Logic 49 (4):361-384.
    Dijkstra and Scholten have proposed a formalization of classical predicate logic on a novel deductive system as an alternative to Hilbert's style of proof and Gentzen's deductive systems. In this context we call it CED (Calculus of Equational Deduction). This deductive method promotes logical equivalence over implication and shows that there are easy ways to prove predicate formulas without the introduction of hypotheses or metamathematical tools such as the deduction theorem. Moreover, syntactic considerations (in Dijkstra's words, "letting the symbols (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientific Research.Yaroslav Shramko - 2005 - Studia Logica 80 (2-3):347-367.
    We consider a logic which is semantically dual (in some precise sense of the term) to intuitionistic. This logic can be labeled as “falsification logic”: it embodies the Popperian methodology of scientific discovery. Whereas intuitionistic logic deals with constructive truth and non-constructive falsity, and Nelson's logic takes both truth and falsity as constructive notions, in the falsification logic truth is essentially non-constructive as opposed to falsity that is conceived constructively. We also briefly (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  37.  61
    Inquisitive Intuitionistic Logic.Wesley H. Holliday - 2020 - In Nicola Olivetti & Rineke Verbrugge (eds.), Advances in Modal Logic, Vol. 11. College Publications. pp. 329-348.
    Inquisitive logic is a research program seeking to expand the purview of logic beyond declarative sentences to include the logic of questions. To this end, inquisitive propositional logic extends classical propositional logic for declarative sentences with principles governing a new binary connective of inquisitive disjunction, which allows the formation of questions. Recently inquisitive logicians have considered what happens if the logic of declarative sentences is assumed to be intuitionistic rather than classical. In short, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  37
    On Some Semi-Intuitionistic Logics.Juan M. Cornejo & Ignacio D. Viglizzo - 2015 - Studia Logica 103 (2):303-344.
    Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  39.  70
    Intuitionistic logic with strong negation.Yuri Gurevich - 1977 - Studia Logica 36 (1-2):49 - 59.
    This paper is a reaction to the following remark by grzegorczyk: "the compound sentences are not a product of experiment. they arise from reasoning. this concerns also negations; we see that the lemon is yellow, we do not see that it is not blue." generally, in science the truth is ascertained as indirectly as falsehood. an example: a litmus-paper is used to verify the sentence "the solution is acid." this approach gives rise to a (very intuitionistic indeed) conservative extension (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  40.  46
    Intuitionistic Logic is a Connexive Logic.Davide Fazio, Antonio Ledda & Francesco Paoli - 2023 - Studia Logica 112 (1):95-139.
    We show that intuitionistic logic is deductively equivalent to Connexive Heyting Logic ($$\textrm{CHL}$$ CHL ), hereby introduced as an example of a strongly connexive logic with an intuitive semantics. We use the reverse algebraisation paradigm: $$\textrm{CHL}$$ CHL is presented as the assertional logic of a point regular variety (whose structure theory is examined in detail) that turns out to be term equivalent to the variety of Heyting algebras. We provide Hilbert-style and Gentzen-style proof systems for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  82
    A Semantic Hierarchy for Intuitionistic Logic.Guram Bezhanishvili & Wesley H. Holliday - 2019 - Indagationes Mathematicae 30 (3):403-469.
    Brouwer's views on the foundations of mathematics have inspired the study of intuitionistic logic, including the study of the intuitionistic propositional calculus and its extensions. The theory of these systems has become an independent branch of logic with connections to lattice theory, topology, modal logic and other areas. This paper aims to present a modern account of semantics for intuitionistic propositional systems. The guiding idea is that of a hierarchy of semantics, organized by increasing (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  42. Intuitionistic logic and elementary rules.Ian Humberstone & David Makinson - 2011 - Mind 120:1035-1051.
    The interplay of introduction and elimination rules for propositional connectives is often seen as suggesting a distinguished role for intuitionistic logic. We prove three formal results about intuitionistic propositional logic that bear on that perspective, and discuss their significance.
     
    Export citation  
     
    Bookmark   2 citations  
  43.  51
    Intuitionistic logic and modality via topology.Leo Esakia - 2004 - Annals of Pure and Applied Logic 127 (1-3):155-170.
    In the pioneering article and two papers, written jointly with McKinsey, Tarski developed the so-called algebraic and topological frameworks for the Intuitionistic Logic and the Lewis modal system. In this paper, we present an outline of modern systems with a topological tinge. We consider topological interpretation of basic systems GL and G of the provability logic in terms of the Cantor derivative and the Hausdorff residue.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  44.  30
    (1 other version)Intuitionistic Logic.Dirk van Dalen - 2001 - In Lou Goble (ed.), The Blackwell Guide to Philosophical Logic. Malden, Mass.: Wiley-Blackwell. pp. 224–257.
    There are basically two ways to view intuitionistic logic: as a philosophical‐foundational issue in mathematics; or as a technical discipline within mathematical logic. Considering first the philosophical aspects, for they will provide the motivation for the subject, this chapter follows L. E. J. Brouwer, the founding father of intuitionism. Although Brouwer himself contributed little to intuitionistic logic as seen from textbooks and papers, he did point the way for his successors.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  45. Truth-Maker Semantics for Intuitionistic Logic.Kit Fine - 2014 - Journal of Philosophical Logic 43 (2-3):549-577.
    I propose a new semantics for intuitionistic logic, which is a cross between the construction-oriented semantics of Brouwer-Heyting-Kolmogorov and the condition-oriented semantics of Kripke. The new semantics shows how there might be a common semantical underpinning for intuitionistic and classical logic and how intuitionistic logic might thereby be tied to a realist conception of the relationship between language and the world.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   92 citations  
  46.  72
    Questions and Dependency in Intuitionistic Logic.Ivano Ciardelli, Rosalie Iemhoff & Fan Yang - 2020 - Notre Dame Journal of Formal Logic 61 (1):75-115.
    In recent years, the logic of questions and dependencies has been investigated in the closely related frameworks of inquisitive logic and dependence logic. These investigations have assumed classical logic as the background logic of statements, and added formulas expressing questions and dependencies to this classical core. In this paper, we broaden the scope of these investigations by studying questions and dependency in the context of intuitionistic logic. We propose an intuitionistic team semantics, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  47.  43
    Semi-intuitionistic Logic with Strong Negation.Juan Manuel Cornejo & Ignacio Viglizzo - 2018 - Studia Logica 106 (2):281-293.
    Motivated by the definition of semi-Nelson algebras, a propositional calculus called semi-intuitionistic logic with strong negation is introduced and proved to be complete with respect to that class of algebras. An axiomatic extension is proved to have as algebraic semantics the class of Nelson algebras.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  48.  43
    A note on dual-intuitionistic logic.Norihiro Kamide - 2003 - Mathematical Logic Quarterly 49 (5):519.
    Dual-intuitionistic logics are logics proposed by Czermak , Goodman and Urbas . It is shown in this paper that there is a correspondence between Goodman's dual-intuitionistic logic and Nelson's constructive logic N−.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  49.  24
    A probabilistic extension of intuitionistic logic.Z. Ognjanovic & Z. Markovic - 2003 - Mathematical Logic Quarterly 49 (4):415.
    We introduce a probabilistic extension of propositional intuitionistic logic. The logic allows making statements such as P≥sα, with the intended meaning “the probability of truthfulness of α is at least s”. We describe the corresponding class of models, which are Kripke models with a naturally arising notion of probability, and give a sound and complete infinitary axiomatic system. We prove that the logic is decidable.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  50. Intuitionistic Logic and Elementary Rules.Lloyd Humberstone & David Makinson - 2011 - Mind 120 (480):1035-1051.
    The interplay of introduction and elimination rules for propositional connectives is often seen as suggesting a distinguished role for intuitionistic logic. We prove three formal results concerning intuitionistic propositional logic that bear on that perspective, and discuss their significance. First, for a range of connectives including both negation and the falsum, there are no classically or intuitionistically correct introduction rules. Second, irrespective of the choice of negation or the falsum as a primitive connective, classical and (...) consequence satisfy exactly the same structural, introduction, and elimination (briefly, elementary) rules. Third, for falsum as primitive only, intuitionistic consequence is the least consequence relation that satisfies all classically correct elementary rules. (shrink)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 970