Results for ' WKL'

37 found
Order:
  1.  32
    WKL 0 and induction principles in model theory.David R. Belanger - 2015 - Annals of Pure and Applied Logic 166 (7-8):767-799.
  2. RT₂² does not imply WKL₀.Jiayi Liu - 2012 - Journal of Symbolic Logic 77 (2):609-620.
    We prove that RCA₀ + RT $RT\begin{array}{*{20}{c}} 2 \\ 2 \\ \end{array} $ ̸͢ WKL₀ by showing that for any set C not of PA-degree and any set A, there exists an infinite subset G of A or ̅Α, such that G ⊕ C is also not of PA-degree.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  3.  49
    Non‐standard Analysis in WKL 0.Kazuyuki Tanaka - 1997 - Mathematical Logic Quarterly 43 (3):396-400.
    Within a weak subsystem of second‐order arithmetic WKL0, we develop basic part of non‐standard analysis up to the Peano existence theorem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  4.  35
    Unifying the model theory of first-order and second-order arithmetic via WKL 0 ⁎.Ali Enayat & Tin Lok Wong - 2017 - Annals of Pure and Applied Logic 168 (6):1247-1283.
  5.  16
    Coding of real‐valued continuous functions under WKL$\mathsf {WKL}$.Tatsuji Kawai - 2023 - Mathematical Logic Quarterly 69 (3):370-391.
    In the context of constructive reverse mathematics, we show that weak Kőnig's lemma () implies that every pointwise continuous function is induced by a code in the sense of reverse mathematics. This, combined with the fact that implies the Fan theorem, shows that implies the uniform continuity theorem: every pointwise continuous function has a modulus of uniform continuity. Our results are obtained in Heyting arithmetic in all finite types with quantifier‐free axiom of choice.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  35
    A new conservation result of WKL 0 over RCA 0.António Marques Fernandes - 2002 - Archive for Mathematical Logic 41 (1):55-63.
    In this paper we give a partial answer to a conjecture of Tanaka. We prove that: if WKL0 proves a sentence of the form (∀X)(∃!Y)ψ(X, Y) for a Σ03-formula ψ, then so does RCA0.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  32
    Erna and Friedman's reverse mathematics.Sam Sanders - 2011 - Journal of Symbolic Logic 76 (2):637 - 664.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed around 1995 by Patrick Suppes and Richard Sommer. Recently, the author showed the consistency of ERNA with several transfer principles and proved results of nonstandard analysis in the resulting theories (see [12] and [13]). Here, we show that Weak König's lemma (WKL) and many of its equivalent formulations over RCA₀ from Reverse Mathematics (see [21] and [22]) can be 'pushed down' (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  8.  67
    Combinatorial principles weaker than Ramsey's Theorem for pairs.Denis R. Hirschfeldt & Richard A. Shore - 2007 - Journal of Symbolic Logic 72 (1):171-206.
    We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is well-known that Ramsey's Theorem for pairs (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  9. (1 other version)Formalizing forcing arguments in subsystems of second-order arithmetic.Jeremy Avigad - 1996 - Annals of Pure and Applied Logic 82 (2):165-191.
    We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen the conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths of proofs.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  10.  26
    The reverse mathematics of theorems of Jordan and lebesgue.André Nies, Marcus A. Triplett & Keita Yokoyama - 2021 - Journal of Symbolic Logic 86 (4):1657-1675.
    The Jordan decomposition theorem states that every function $f \colon \, [0,1] \to \mathbb {R}$ of bounded variation can be written as the difference of two non-decreasing functions. Combining this fact with a result of Lebesgue, every function of bounded variation is differentiable almost everywhere in the sense of Lebesgue measure. We analyze the strength of these theorems in the setting of reverse mathematics. Over $\mathsf {RCA}_{0}$, a stronger version of Jordan’s result where all functions are continuous is equivalent to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  39
    Formalizing non-standard arguments in second-order arithmetic.Keita Yokoyama - 2010 - Journal of Symbolic Logic 75 (4):1199-1210.
    In this paper, we introduce the systems ns-ACA₀ and ns-WKL₀ of non-standard second-order arithmetic in which we can formalize non-standard arguments in ACA₀ and WKL₀, respectively. Then, we give direct transformations from non-standard proofs in ns-ACA₀ or ns-WKL₀ into proofs in ACA₀ or WKL₀.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Effectiveness for infinite variable words and the Dual Ramsey Theorem.Joseph S. Miller & Reed Solomon - 2004 - Archive for Mathematical Logic 43 (4):543-555.
    We examine the Dual Ramsey Theorem and two related combinatorial principles VW(k,l) and OVW(k,l) from the perspectives of reverse mathematics and effective mathematics. We give a statement of the Dual Ramsey Theorem for open colorings in second order arithmetic and formalize work of Carlson and Simpson [1] to show that this statement implies ACA 0 over RCA 0 . We show that neither VW(2,2) nor OVW(2,2) is provable in WKL 0 . These results give partial answers to questions posed by (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13.  57
    Stable Ramsey's Theorem and Measure.Damir D. Dzhafarov - 2011 - Notre Dame Journal of Formal Logic 52 (1):95-112.
    The stable Ramsey's theorem for pairs has been the subject of numerous investigations in mathematical logic. We introduce a weaker form of it by restricting from the class of all stable colorings to subclasses of it that are nonnull in a certain effective measure-theoretic sense. We show that the sets that can compute infinite homogeneous sets for nonnull many computable stable colorings and the sets that can compute infinite homogeneous sets for all computable stable colorings agree below $\emptyset'$ but not (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  14.  29
    Weak Kleene Logic and Topic-Sensitive Logics.Roberto Ciuni - forthcoming - Logic and Logical Philosophy.
    This paper makes first steps toward a systematic investigation of how pertinence to topic contributes to determine deductively valid reasoning along with preservation of designated values. I start from the interpretation of Weak Kleene Logic WKL as a reasoning tool that preserves truth and topic pertinence, which is offered by Jc Beall. I keep Beall’s motivations and I argue that WKL cannot meet them in a satisfying way. In light of this, I propose an informal definition of a topic-sensitive logic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  66
    A non-standard construction of Haar measure and weak könig's lemma.Kazuyuki Tanaka & Takeshi Yamazaki - 2000 - Journal of Symbolic Logic 65 (1):173-186.
    In this paper, we show within RCA 0 that weak Konig's lemma is necessary and sufficient to prove that any (separable) compact group has a Haar measure. Within WKL 0 , a Haar measure is constructed by a non-standard method based on a fact that every countable non-standard model of WKL 0 has a proper initial part isomorphic to itself [10].
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  16.  19
    Constructing sequences one step at a time.Henry Towsner - 2020 - Journal of Mathematical Logic 20 (3):2050017.
    We propose a new method for constructing Turing ideals satisfying principles of reverse mathematics below the Chain–Antichain (CAC) Principle. Using this method, we are able to prove several new separations in the presence of Weak König’s Lemma (WKL), including showing that CAC+WKL does not imply the thin set theorem for pairs, and that the principle “the product of well-quasi-orders is a well-quasi-order” is strictly between CAC and the Ascending/Descending Sequences principle, even in the presence of WKL.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17. A feasible theory for analysis.Fernando Ferreira - 1994 - Journal of Symbolic Logic 59 (3):1001-1011.
    We construct a weak second-order theory of arithmetic which includes Weak König's Lemma (WKL) for trees defined by bounded formulae. The provably total functions (with Σ b 1 -graphs) of this theory are the polynomial time computable functions. It is shown that the first-order strength of this version of WKL is exactly that of the scheme of collection for bounded formulae.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  18.  23
    On uniform weak König's lemma.Ulrich Kohlenbach - 2002 - Annals of Pure and Applied Logic 114 (1-3):103-116.
    The so-called weak König's lemma WKL asserts the existence of an infinite path b in any infinite binary tree . Based on this principle one can formulate subsystems of higher-order arithmetic which allow to carry out very substantial parts of classical mathematics but are Π 2 0 -conservative over primitive recursive arithmetic PRA . In Kohlenbach 1239–1273) we established such conservation results relative to finite type extensions PRA ω of PRA . In this setting one can consider also a uniform (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  19.  74
    Located sets and reverse mathematics.Mariagnese Giusto & Stephen Simpson - 2000 - Journal of Symbolic Logic 65 (3):1451-1480.
    Let X be a compact metric space. A closed set K $\subseteq$ X is located if the distance function d(x, K) exists as a continuous real-valued function on X; weakly located if the predicate d(x, K) $>$ r is Σ 0 1 allowing parameters. The purpose of this paper is to explore the concepts of located and weakly located subsets of a compact separable metric space in the context of subsystems of second order arithmetic such as RCA 0 , WKL (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  20.  79
    The baire category theorem in weak subsystems of second-order arithmetic.Douglas K. Brown & Stephen G. Simpson - 1993 - Journal of Symbolic Logic 58 (2):557-578.
    Working within weak subsystems of second-order arithmetic Z2 we consider two versions of the Baire Category theorem which are not equivalent over the base system RCA0. We show that one version (B.C.T.I) is provable in RCA0 while the second version (B.C.T.II) requires a stronger system. We introduce two new subsystems of Z2, which we call RCA+ 0 and WKL+ 0, and show that RCA+ 0 suffices to prove B.C.T.II. Some model theory of WKL+ 0 and its importance in view of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  21.  38
    The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic.Nobuyuki Sakamoto & Keita Yokoyama - 2007 - Archive for Mathematical Logic 46 (5-6):465-480.
    In this paper, we show within ${\mathsf{RCA}_0}$ that both the Jordan curve theorem and the Schönflies theorem are equivalent to weak König’s lemma. Within ${\mathsf {WKL}_0}$ , we prove the Jordan curve theorem using an argument of non-standard analysis based on the fact that every countable non-standard model of ${\mathsf {WKL}_0}$ has a proper initial part that is isomorphic to itself (Tanaka in Math Logic Q 43:396–400, 1997).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  22.  48
    Fragment of nonstandard analysis with a finitary consistency proof.Michal Rössler & Emil Jeřábek - 2007 - Bulletin of Symbolic Logic 13 (1):54-70.
    We introduce a nonstandard arithmetic $NQA^-$ based on the theory developed by R. Chuaqui and P. Suppes in [2] (we will denote it by $NQA^+$ ), with a weakened external open minimization schema. A finitary consistency proof for $NQA^-$ formalizable in PRA is presented. We also show interesting facts about the strength of the theories $NQA^-$ and $NQA^+$ ; $NQA^-$ is mutually interpretable with $I\Delta_0 + EXP$ , and on the other hand, $NQA^+$ interprets the theories IΣ1 and $WKL_0$.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  23.  73
    Proof mining in L1-approximation.Ulrich Kohlenbach & Paulo Oliva - 2003 - Annals of Pure and Applied Logic 121 (1):1-38.
    In this paper, we present another case study in the general project of proof mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation developed in Kohlenbach , Oxford University Press, Oxford, 1996, pp. 225–260) to analyze Cheney's simplification 189) of Jackson's original proof 320) of the uniqueness of the best L1-approximation of continuous functions fC[0,1] by polynomials pPn of degree n. Cheney's (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  24. Some axioms for constructive analysis.Joan Rand Moschovakis & Garyfallia Vafeiadou - 2012 - Archive for Mathematical Logic 51 (5-6):443-459.
    This note explores the common core of constructive, intuitionistic, recursive and classical analysis from an axiomatic standpoint. In addition to clarifying the relation between Kleene’s and Troelstra’s minimal formal theories of numbers and number-theoretic sequences, we propose some modified choice principles and other function existence axioms which may be of use in reverse constructive analysis. Specifically, we consider the function comprehension principles assumed by the two minimal theories EL and M, introduce an axiom schema CFd asserting that every decidable property (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  25.  54
    Primitive Recursion and the Chain Antichain Principle.Alexander P. Kreuzer - 2012 - Notre Dame Journal of Formal Logic 53 (2):245-265.
    Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  26.  25
    On some formalized conservation results in arithmetic.P. Clote, P. Hájek & J. Paris - 1990 - Archive for Mathematical Logic 30 (4):201-218.
    IΣ n andBΣ n are well known fragments of first-order arithmetic with induction and collection forΣ n formulas respectively;IΣ n 0 andBΣ n 0 are their second-order counterparts. RCA0 is the well known fragment of second-order arithmetic with recursive comprehension;WKL 0 isRCA 0 plus weak König's lemma. We first strengthen Harrington's conservation result by showing thatWKL 0 +BΣ n 0 is Π 1 1 -conservative overRCA 0 +BΣ n 0 . Then we develop some model theory inWKL 0 and illustrate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  27.  35
    Comparing the Strength of Diagonally Nonrecursive Functions in the Absence of Induction.François G. Dorais, Jeffry L. Hirst & Paul Shafer - 2015 - Journal of Symbolic Logic 80 (4):1211-1235.
    We prove that the statement “there is aksuch that for everyfthere is ak-bounded diagonally nonrecursive function relative tof” does not imply weak König’s lemma over${\rm{RC}}{{\rm{A}}_0} + {\rm{B\Sigma }}_2^0$. This answers a question posed by Simpson. A recursion-theoretic consequence is that the classic fact that everyk-bounded diagonally nonrecursive function computes a 2-bounded diagonally nonrecursive function may fail in the absence of${\rm{I\Sigma }}_2^0$.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  53
    Term extraction and Ramsey's theorem for pairs.Alexander P. Kreuzer & Ulrich Kohlenbach - 2012 - Journal of Symbolic Logic 77 (3):853-895.
    In this paper we study with proof-theoretic methods the function(al) s provably recursive relative to Ramsey's theorem for pairs and the cohesive principle (COH). Our main result on COH is that the type 2 functional provably recursive from $RCA_0 + COH + \Pi _1^0 - CP$ are primitive recursive. This also provides a uniform method to extract bounds from proofs that use these principles. As a consequence we obtain a new proof of the fact that $WKL_0 + \Pi _1^0 - (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  29.  8
    Slicing the truth: on the computable and reverse mathematics of combinatorial principles.Denis Roman Hirschfeldt - 2015 - [Hackensack,] NJ: World Scientific. Edited by C.-T. Chong.
    1. Setting off: An introduction. 1.1. A measure of motivation. 1.2. Computable mathematics. 1.3. Reverse mathematics. 1.4. An overview. 1.5. Further reading -- 2. Gathering our tools: Basic concepts and notation. 2.1. Computability theory. 2.2. Computability theoretic reductions. 2.3. Forcing -- 3. Finding our path: Konig's lemma and computability. 3.1. II[symbol] classes, basis theorems, and PA degrees. 3.2. Versions of Konig's lemma -- 4. Gauging our strength: Reverse mathematics. 4.1. RCA[symbol]. 4.2. Working in RCA[symbol]. 4.3. ACA[symbol]. 4.4. WKL[symbol]. 4.5. [symbol]-models. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  56
    Separation and weak könig's lemma.A. Humphreys & Stephen Simpson - 1999 - Journal of Symbolic Logic 64 (1):268-278.
    We continue the work of [14, 3, 1, 19, 16, 4, 12, 11, 20] investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem for open convex sets is equivalent to WKL 0 over RCA 0 . We show that the separation theorem for separably closed convex sets is equivalent to ACA 0 over RCA 0 . Our strategy for proving these geometrical Hahn-Banach theorems is to reduce to the finite-dimensional case (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  62
    Subsystems of second-order arithmetic between RCA0 and WKL0.Carl Mummert - 2008 - Archive for Mathematical Logic 47 (3):205-210.
    We study the Lindenbaum algebra ${\fancyscript{A}}$ (WKL o, RCA o) of sentences in the language of second-order arithmetic that imply RCA o and are provable from WKL o. We explore the relationship between ${\Sigma^1_1}$ sentences in ${\fancyscript{A}}$ (WKL o, RCA o) and ${\Pi^0_1}$ classes of subsets of ω. By applying a result of Binns and Simpson (Arch. Math. Logic 43(3), 399–414, 2004) about ${\Pi^0_1}$ classes, we give a specific embedding of the free distributive lattice with countably many generators into ${\fancyscript{A}}$ (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  60
    The Dirac delta function in two settings of Reverse Mathematics.Sam Sanders & Keita Yokoyama - 2012 - Archive for Mathematical Logic 51 (1-2):99-121.
    The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  44
    Lebesgue numbers and Atsuji spaces in subsystems of second-order arithmetic.Mariagnese Giusto & Alberto Marcone - 1998 - Archive for Mathematical Logic 37 (5-6):343-362.
    We study Lebesgue and Atsuji spaces within subsystems of second order arithmetic. The former spaces are those such that every open covering has a Lebesgue number, while the latter are those such that every continuous function defined on them is uniformly continuous. The main results we obtain are the following: the statement “every compact space is Lebesgue” is equivalent to $\hbox{\sf WKL}_0$ ; the statements “every perfect Lebesgue space is compact” and “every perfect Atsuji space is compact” are equivalent to (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  34.  78
    Π10 classes and minimal degrees.Marcia J. Groszek & Theodore A. Slaman - 1997 - Annals of Pure and Applied Logic 87 (2):117-144.
    Theorem. There is a non-empty Π10 class of reals, each of which computes a real of minimal degree. Corollary. WKL “there is a minimal Turing degree”. This answers a question of H. Friedman and S. Simpson.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  29
    Program extraction for 2-random reals.Alexander P. Kreuzer - 2013 - Archive for Mathematical Logic 52 (5-6):659-666.
    Let ${2-\textsf{RAN}}$ be the statement that for each real X a real 2-random relative to X exists. We apply program extraction techniques we developed in Kreuzer and Kohlenbach (J. Symb. Log. 77(3):853–895, 2012. doi:10.2178/jsl/1344862165), Kreuzer (Notre Dame J. Formal Log. 53(2):245–265, 2012. doi:10.1215/00294527-1715716) to this principle. Let ${{\textsf{WKL}_0^\omega}}$ be the finite type extension of ${\textsf{WKL}_0}$ . We obtain that one can extract primitive recursive realizers from proofs in ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN}}$ , i.e., if ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN} (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36.  37
    Harrington’s conservation theorem redone.Fernando Ferreira & Gilda Ferreira - 2008 - Archive for Mathematical Logic 47 (2):91-100.
    Leo Harrington showed that the second-order theory of arithmetic WKL 0 is ${\Pi^1_1}$ -conservative over the theory RCA 0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  45
    A variant of Mathias forcing that preserves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document}. [REVIEW]François G. Dorais - 2012 - Archive for Mathematical Logic 51 (7-8):751-780.
    We present and analyze \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_\sigma}$$\end{document}-Mathias forcing, which is similar but tamer than Mathias forcing. In particular, we show that this forcing preserves certain weak subsystems of second-order arithmetic such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WKL}_0 + \mathsf{I}\Sigma^0_2}$$\end{document}, whereas Mathias forcing does not. We also show that the needed reals for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation