Results for ' 03H15'

19 found
Order:
  1.  8
    A Parameterized Halting Problem, Truth and the Mrdp Theorem.Yijia Chen, Moritz Müller & Keita Yokoyama - forthcoming - Journal of Symbolic Logic:1-26.
    We study the parameterized complexity of the problem to decide whether a given natural number n satisfies a given $\Delta _0$ -formula $\varphi (x)$ ; the parameter is the size of $\varphi $. This parameterization focusses attention on instances where n is large compared to the size of $\varphi $. We show unconditionally that this problem does not belong to the parameterized analogue of $\mathsf {AC}^0$. From this we derive that certain natural upper bounds on the complexity of our parameterized (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. Strict Finitism, Feasibility, and the Sorites.Walter Dean - 2018 - Review of Symbolic Logic 11 (2):295-346.
    This article bears on four topics: observational predicates and phenomenal properties, vagueness, strict finitism as a philosophy of mathematics, and the analysis of feasible computability. It is argued that reactions to strict finitism point towards a semantics for vague predicates in the form of nonstandard models of weak arithmetical theories of the sort originally introduced to characterize the notion of feasibility as understood in computational complexity theory. The approach described eschews the use of nonclassical logic and related devices like degrees (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  3.  17
    Non-Tightness in Class Theory and Second-Order Arithmetic.Alfredo Roque Freire & Kameryn J. Williams - forthcoming - Journal of Symbolic Logic:1-28.
    A theory T is tight if different deductively closed extensions of T (in the same language) cannot be bi-interpretable. Many well-studied foundational theories are tight, including $\mathsf {PA}$ [39], $\mathsf {ZF}$, $\mathsf {Z}_2$, and $\mathsf {KM}$ [6]. In this article we extend Enayat’s investigations to subsystems of these latter two theories. We prove that restricting the Comprehension schema of $\mathsf {Z}_2$ and $\mathsf {KM}$ gives non-tight theories. Specifically, we show that $\mathsf {GB}$ and $\mathsf {ACA}_0$ each admit different bi-interpretable extensions, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  18
    The Structural Complexity of Models of Arithmetic.Antonio Montalbán & Dino Rossegger - 2024 - Journal of Symbolic Logic 89 (4):1703-1719.
    We calculate the possible Scott ranks of countable models of Peano arithmetic. We show that no non-standard model can have Scott rank less than $\omega $ and that non-standard models of true arithmetic must have Scott rank greater than $\omega $. Other than that there are no restrictions. By giving a reduction via $\Delta ^{\mathrm {in}}_{1}$ bi-interpretability from the class of linear orderings to the canonical structural $\omega $ -jump of models of an arbitrary completion T of $\mathrm {PA}$ we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  17
    Self-Embeddings of Models of Arithmetic; Fixed Points, Small Submodels, and Extendability.Saeideh Bahrami - 2024 - Journal of Symbolic Logic 89 (3):1044-1066.
    In this paper we will show that for every cut I of any countable nonstandard model $\mathcal {M}$ of $\mathrm {I}\Sigma _{1}$, each I-small $\Sigma _{1}$ -elementary submodel of $\mathcal {M}$ is of the form of the set of fixed points of some proper initial self-embedding of $\mathcal {M}$ iff I is a strong cut of $\mathcal {M}$. Especially, this feature will provide us with some equivalent conditions with the strongness of the standard cut in a given countable model $\mathcal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  14
    Self-Divisible Ultrafilters and Congruences In.Mauro di Nasso, Lorenzo Luperi Baglini, Rosario Mennuni, Moreno Pierobon & Mariaclara Ragosta - forthcoming - Journal of Symbolic Logic:1-18.
    We introduceself-divisibleultrafilters, which we prove to be precisely those$w$such that the weak congruence relation$\equiv _w$introduced by Šobot is an equivalence relation on$\beta {\mathbb Z}$. We provide several examples and additional characterisations; notably we show that$w$is self-divisible if and only if$\equiv _w$coincides with the strong congruence relation$\mathrel {\equiv ^{\mathrm {s}}_{w}}$, if and only if the quotient$(\beta {\mathbb Z},\oplus )/\mathord {\mathrel {\equiv ^{\mathrm {s}}_{w}}}$is a profinite group. We also construct an ultrafilter$w$such that$\equiv _w$fails to be symmetric, and describe the interaction between the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7. $\Pi ^0_4$ conservation of the ordered variable word theorem.Quentin le Houérou & Ludovic Levy Patey - forthcoming - Journal of Symbolic Logic:1-16.
    A left-variable word over an alphabet A is a word over $A \cup \{\star \}$ whose first letter is the distinguished symbol $\star $ standing for a placeholder. The ordered variable word theorem ( $\mathsf {OVW}$ ), also known as Carlson–Simpson’s theorem, is a tree partition theorem, stating that for every finite alphabet A and every finite coloring of the words over A, there exists a word $c_0$ and an infinite sequence of left-variable words $w_1, w_2, \dots $ such that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  29
    Marginalia on a theorem of Woodin.Rasmus Blanck & Ali Enayat - 2017 - Journal of Symbolic Logic 82 (1):359-374.
    Let$\left\langle {{W_n}:n \in \omega } \right\rangle$be a canonical enumeration of recursively enumerable sets, and supposeTis a recursively enumerable extension of PA (Peano Arithmetic) in the same language. Woodin (2011) showed that there exists an index$e \in \omega$(that depends onT) with the property that if${\cal M}$is a countable model ofTand for some${\cal M}$-finite sets,${\cal M}$satisfies${W_e} \subseteq s$, then${\cal M}$has an end extension${\cal N}$that satisfiesT+We=s.Here we generalize Woodin’s theorem to all recursively enumerable extensionsTof the fragment${{\rm{I}\rm{\Sigma }}_1}$of PA, and remove the countability restriction (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  50
    Order Types of Models of Fragments of Peano Arithmetic.Lorenzo Galeotti & Benedikt Löwe - 2022 - Bulletin of Symbolic Logic 28 (2):182-206.
    The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  32
    Disjunctions with Stopping Conditions.Roman Kossak & Bartosz Wcisło - 2021 - Bulletin of Symbolic Logic 27 (3):231-253.
    We introduce a tool for analysing models of$\text {CT}^-$, the compositional truth theory over Peano Arithmetic. We present a new proof of Lachlan’s theorem that the arithmetical part of models of$\text {CT}^-$are recursively saturated. We also use this tool to provide a new proof of theorem from [8] that all models of$\text {CT}^-$carry a partial inductive truth predicate. Finally, we construct a partial truth predicate defined for a set of formulae whose syntactic depth forms a nonstandard cut which cannot be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  11.  84
    Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  12.  43
    Model Theory and Proof Theory of the Global Reflection Principle.Mateusz Zbigniew Łełyk - 2023 - Journal of Symbolic Logic 88 (2):738-779.
    The current paper studies the formal properties of the Global Reflection Principle, to wit the assertion “All theorems of$\mathrm {Th}$are true,” where$\mathrm {Th}$is a theory in the language of arithmetic and the truth predicate satisfies the usual Tarskian inductive conditions for formulae in the language of arithmetic. We fix the gap in Kotlarski’s proof from [15], showing that the Global Reflection Principle for Peano Arithmetic is provable in the theory of compositional truth with bounded induction only ($\mathrm {CT}_0$). Furthermore, we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  13.  30
    Models of Positive Truth.Mateusz Łełyk & Bartosz Wcisło - 2019 - Review of Symbolic Logic 12 (1):144-172.
    This paper is a follow-up to [4], in which a mistake in [6] (which spread also to [9]) was corrected. We give a strenghtening of the main result on the semantical nonconservativity of the theory of PT−with internal induction for total formulae${(\rm{P}}{{\rm{T}}^ - } + {\rm{INT}}\left( {{\rm{tot}}} \right)$, denoted by PT−in [9]). We show that if to PT−the axiom of internal induction forallarithmetical formulae is added (giving${\rm{P}}{{\rm{T}}^ - } + {\rm{INT}}$), then this theory is semantically stronger than${\rm{P}}{{\rm{T}}^ - } + (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  14.  43
    On the strength of Ramsey's theorem without Σ1 -induction.Keita Yokoyama - 2013 - Mathematical Logic Quarterly 59 (1-2):108-111.
    In this paper, we show that equation image is a equation image-conservative extension of BΣ1 + exp, thus it does not imply IΣ1.
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  15.  23
    Full Satisfaction Classes, Definability, and Automorphisms.Bartosz Wcisło - 2022 - Notre Dame Journal of Formal Logic 63 (2):143-163.
    We show that for every countable recursively saturated model M of Peano arithmetic and every subset A⊆M, there exists a full satisfaction class SA⊆M2 such that A is definable in (M,SA) without parameters. It follows that in every such model, there exists a full satisfaction class which makes every element definable, and thus the expanded model is minimal and rigid. On the other hand, as observed by Roman Kossak, for every full satisfaction class S there are two elements which have (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  29
    How Strong is Ramsey’s Theorem If Infinity Can Be Weak?Leszek Aleksander Kołodziejczyk, Katarzyna W. Kowalik & Keita Yokoyama - 2023 - Journal of Symbolic Logic 88 (2):620-639.
    We study the first-order consequences of Ramsey’s Theorem fork-colourings ofn-tuples, for fixed$n, k \ge 2$, over the relatively weak second-order arithmetic theory$\mathrm {RCA}^*_0$. Using the Chong–Mourad coding lemma, we show that in a model of$\mathrm {RCA}^*_0$that does not satisfy$\Sigma ^0_1$induction,$\mathrm {RT}^n_k$is equivalent to its relativization to any proper$\Sigma ^0_1$-definable cut, so its truth value remains unchanged in all extensions of the model with the same first-order universe.We give a complete axiomatization of the first-order consequences of$\mathrm {RCA}^*_0 + \mathrm {RT}^n_k$for$n \ge (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  40
    A note on parameter free Π1 -induction and restricted exponentiation.A. Cordón-Franco, A. Fernández-Margarit & F. F. Lara-Martín - 2011 - Mathematical Logic Quarterly 57 (5):444-455.
    We characterize the sets of all Π2 and all equation image theorems of IΠ−1 in terms of restricted exponentiation, and use these characterizations to prove that both sets are not deductively equivalent. We also discuss how these results generalize to n > 0. As an application, we prove that a conservation theorem of Beklemishev stating that IΠ−n + 1 is conservative over IΣ−n with respect to equation image sentences cannot be extended to Πn + 2 sentences. © 2011 WILEY-VCH Verlag (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  18.  13
    The Pentagon as a Substructure Lattice of Models of Peano Arithmetic.James H. Schmerl - forthcoming - Journal of Symbolic Logic:1-20.
    Wilkie proved in 1977 that every countable model ${\mathcal M}$ of Peano Arithmetic has an elementary end extension ${\mathcal N}$ such that the interstructure lattice $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M})$ is the pentagon lattice ${\mathbf N}_5$. This theorem implies that every countable nonstandard ${\mathcal M}$ has an elementary cofinal extension ${\mathcal N}$ such that $\operatorname {\mathrm {Lt}}({\mathcal N} / {\mathcal M}) \cong {\mathbf N}_5$. It is proved here that whenever ${\mathcal M} \prec {\mathcal N} \models \mathsf {PA}$ and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  30
    Hierarchical Incompleteness Results for Arithmetically Definable Extensions of Fragments of Arithmetic.Rasmus Blanck - 2021 - Review of Symbolic Logic 14 (3):624-644.
    There has been a recent interest in hierarchical generalizations of classic incompleteness results. This paper provides evidence that such generalizations are readily obtainable from suitably formulated hierarchical versions of the principles used in the original proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the universal algorithm, and a few related results. As a corollary, we obtain the expected result that the formula expressing “$\mathrm {T}$is$\Sigma _n$-ill” (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation