Results for ' 03D78'

10 found
Order:
  1.  26
    The Discontinuity Problem.Vasco Brattka - 2023 - Journal of Symbolic Logic 88 (3):1191-1212.
    Matthias Schröder has asked the question whether there is a weakest discontinuous problem in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we work (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  27
    Computably Compact Metric Spaces.Rodney G. Downey & Alexander G. Melnikov - 2023 - Bulletin of Symbolic Logic 29 (2):170-263.
    We give a systematic technical exposition of the foundations of the theory of computably compact metric spaces. We discover several new characterizations of computable compactness and apply these characterizations to prove new results in computable analysis and effective topology. We also apply the technique of computable compactness to give new and less combinatorially involved proofs of known results from the literature. Some of these results do not have computable compactness or compact spaces in their statements, and thus these applications are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  20
    Weihrauch Goes Brouwerian.Vasco Brattka & Guido Gherardi - 2020 - Journal of Symbolic Logic 85 (4):1614-1653.
    We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  9
    Comparing Computability in Two Topologies.Djamel Eddine Amir & Mathieu Hoyrup - 2024 - Journal of Symbolic Logic 89 (3):1232-1250.
    Computable analysis provides ways of representing points in a topological space, and therefore of defining a notion of computable points of the space. In this article, we investigate when two topologies on the same space induce different sets of computable points. We first study a purely topological version of the problem, which is to understand when two topologies are not $\sigma $ -homeomorphic. We obtain a characterization leading to an effective version, and we prove that two topologies satisfying this condition (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  18
    Regainingly Approximable Numbers and Sets.Peter Hertling, Rupert Hölzl & Philip Janicki - forthcoming - Journal of Symbolic Logic.
    We call an $\alpha \in \mathbb {R}$ regainingly approximable if there exists a computable nondecreasing sequence $(a_n)_n$ of rational numbers converging to $\alpha $ with $\alpha - a_n n}$ for infinitely many n. Similarly, there exist regainingly approximable sets whose initial segment complexity infinitely often reaches the maximum possible for c.e. sets. Finally, there is a uniform algorithm splitting regular real numbers into two regainingly approximable numbers that are still regular.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  14
    Computability Theory on Polish Metric Spaces.Teerawat Thewmorakot - 2023 - Bulletin of Symbolic Logic 29 (4):664-664.
    Computability theoretic aspects of Polish metric spaces are studied by adapting notions and methods of computable structure theory. In this dissertation, we mainly investigate index sets and classification problems for computably presentable Polish metric spaces. We find the complexity of a number of index sets, isomorphism problems, and embedding problems for computably presentable metric spaces. We also provide several computable structure theory results related to some classical Polish metric spaces such as the Urysohn space $\mathbb {U}$, the Cantor space $2^{\mathbb (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  4
    Many problems, different frameworks: classification of problems in computable analysis and algorithmic learning theory.Vittorio Cipriani - 2024 - Bulletin of Symbolic Logic 30 (2):287-288.
    In this thesis, we study the complexity of some mathematical problems: in particular, those arising in computable analysis and algorithmic learning theory for algebraic structures. Our study is not limited to these two areas: indeed, in both cases, the results we obtain are tightly connected to ideas and tools coming from different areas of mathematical logic, including for example descriptive set theory and reverse mathematics.After giving the necessary preliminaries, we first study the uniform computational strength of the Cantor–Bendixson theorem in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8. THE WEIHRAUCH LATTICE AT THE LEVEL OF $\boldsymbol {\Pi }^11{-}\mathsf{CA}0$ : THE CANTOR–BENDIXSON THEOREM.Vittorio Cipriani, Alberto Marcone & Manlio Valenti - forthcoming - Journal of Symbolic Logic:1-39.
    This paper continues the program connecting reverse mathematics and computable analysis via the framework of Weihrauch reducibility. In particular, we consider problems related to perfect subsets of Polish spaces, studying the perfect set theorem, the Cantor–Bendixson theorem, and various problems arising from them. In the framework of reverse mathematics, these theorems are equivalent, respectively, to $\mathsf {ATR}_0$ and $\boldsymbol {\Pi }^1_1{-}\mathsf{CA}_0$, the two strongest subsystems of second order arithmetic among the so-called big five. As far as we know, this is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9. The Tree Pigeonhole Principle in the Weihrauch Degrees.Damir D. Dzhafarov, Reed Solomon & Manlio Valenti - forthcoming - Journal of Symbolic Logic:1-23.
    We study versions of the tree pigeonhole principle, $\mathsf {TT}^1$, in the context of Weihrauch-style computable analysis. The principle has previously been the subject of extensive research in reverse mathematics, an outstanding question of which investigation is whether $\mathsf {TT}^1$ is $\Pi ^1_1$ -conservative over the ordinary pigeonhole principle, $\mathsf {RT}^1$. Using the recently introduced notion of the first-order part of an instance-solution problem, we formulate the analog of this question for Weihrauch reducibility, and give an affirmative answer. In combination (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  4
    Computable Presentations of C*-Algebras.F. O. X. Alec - 2024 - Journal of Symbolic Logic 89 (3):1313-1338.
    We initiate the study of computable presentations of real and complex C*-algebras under the program of effective metric structure theory. With the group situation as a model, we develop corresponding notions of recursive presentations and word problems for C*-algebras, and show some analogous results hold in this setting. Famously, every finitely generated group with a computable presentation is computably categorical, but we provide a counterexample in the case of C*-algebras. On the other hand, we show every finite-dimensional C*-algebra is computably (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark