Characterizing strong randomness via Martin-Löf randomness

Annals of Pure and Applied Logic 163 (3):214-224 (2012)
  Copy   BIBTEX

Abstract

This article has no associated abstract. (fix it)

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,130

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Martin-Löf randomness and Galton–Watson processes.David Diamondstone & Bjørn Kjos-Hanssen - 2012 - Annals of Pure and Applied Logic 163 (5):519-529.
Randomness and lowness notions via open covers.Laurent Bienvenu & Joseph S. Miller - 2012 - Annals of Pure and Applied Logic 163 (5):506-518.
Computably enumerable sets below random sets.André Nies - 2012 - Annals of Pure and Applied Logic 163 (11):1596-1610.
Defining a randomness notion via another.Kojiro Higuchi & Ningning Peng - 2014 - Mathematical Logic Quarterly 60 (4-5):280-288.
Algorithmic randomness over general spaces.Kenshi Miyabe - 2014 - Mathematical Logic Quarterly 60 (3):184-204.
Universality, optimality, and randomness deficiency.Rupert Hölzl & Paul Shafer - 2015 - Annals of Pure and Applied Logic 166 (10):1049-1069.

Analytics

Added to PP
2013-10-27

Downloads
35 (#643,275)

6 months
13 (#253,178)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

Two More Characterizations of K-Triviality.Noam Greenberg, Joseph S. Miller, Benoit Monin & Daniel Turetsky - 2018 - Notre Dame Journal of Formal Logic 59 (2):189-195.
Defining a randomness notion via another.Kojiro Higuchi & Ningning Peng - 2014 - Mathematical Logic Quarterly 60 (4-5):280-288.

Add more citations

References found in this work

Computability and Randomness.André Nies - 2008 - Oxford, England: Oxford University Press UK.
Randomness and computability: Open questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
The K -Degrees, Low for K Degrees,and Weakly Low for K Sets.Joseph S. Miller - 2009 - Notre Dame Journal of Formal Logic 50 (4):381-391.

View all 7 references / Add more references