An Efficient Recommendation Algorithm Based on Heterogeneous Information Network

Complexity 2021:1-18 (2021)
  Copy   BIBTEX

Abstract

Heterogeneous information networks can naturally simulate complex objects, and they can enrich recommendation systems according to the connections between different types of objects. At present, a large number of recommendation algorithms based on heterogeneous information networks have been proposed. However, the existing algorithms cannot extract and combine the structural features in heterogeneous information networks. Therefore, this paper proposes an efficient recommendation algorithm based on heterogeneous information network, which uses the characteristics of graph convolution neural network to automatically learn node information to extract heterogeneous information and avoid errors caused by the manual search for metapaths. Furthermore, by fully considering the scoring relationship between nodes, a calculation strategy combining heterogeneous information and a scoring information fusion strategy is proposed to solve the scoring between nodes, which makes the prediction scoring more accurate. Finally, by updating the nodes, the training scale is reduced, and the calculation efficiency is improved. The study conducted a large number of experiments on three real data sets with millions of edges. The results of the experiments show that compared with PMF, SemRec, and other algorithms, the proposed algorithm improves the recommendation accuracy MAE by approximately 3% and the RMSE by approximately 8% and reduces the time consumption significantly.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,290

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Research on Context-Awareness Mobile SNS Recommendation Algorithm.Zhijun Zhang & Hong Liu - 2015 - Pattern Recognition and Artificial Intelligence 28.
IMPROVING ENERGY EFFICIENCY IN MANETS BY MULTI-PATH ROUTING.Nastooh Taheri Javan - 2013 - International Journal of Wireless and Mobile Networks 5 (1):163-176.

Analytics

Added to PP
2021-03-06

Downloads
6 (#1,689,015)

6 months
4 (#1,232,162)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references