Abstract
Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: jesteśmy wyposażeni w wystarczająco dobre środki poznawcze, aby uzyskać wgląd w owo uniwersum. Pojęcie rozwiązania problemu matematycznego Gödel rozumie znacznie szerzej niż jako podanie matematycznego dowodu – chodzi raczej o znalezienie wiarogodnych aksjomatów, prowadzących do rozwiązania. Stawiany w artykule problem analizuję na przykładzie hipotezy kontinuum.