Negative Predication and Distinctness

Logica Universalis 17 (1):103-138 (2023)
  Copy   BIBTEX

Abstract

It is argued that the intuitionistic conception of negation as implication of absurdity is inadequate for the proof-theoretic semantic analysis of negative predication and distinctness. Instead, it is suggested to construe negative predication proof-theoretically as subatomic derivation failure, and to define distinctness—understood as a qualified notion—by appeal to negative predication. This proposal is elaborated in terms of intuitionistic bipredicational subatomic natural deduction systems. It is shown that derivations in these systems normalize and that normal derivations have the subexpression (incl. subformula) property. A proof-theoretic semantics for negative predication and distinctness is defined, and an intuitionistic conception of truth based on canonical derivations is proposed. An application to the doctrine of the Trinity, to which negative predication and distinctness are central, illustrates the systems and their proof-theoretic semantics.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,173

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Subatomic Negation.Bartosz Więckowski - 2021 - Journal of Logic, Language and Information 30 (1):207-262.
Reprint of: A more general general proof theory.Heinrich Wansing - 2017 - Journal of Applied Logic 25:23-46.
Bilateralism in Proof-Theoretic Semantics.Nissim Francez - 2013 - Journal of Philosophical Logic (2-3):1-21.
Rules for subatomic derivation.Bartosz Więckowski - 2011 - Review of Symbolic Logic 4 (2):219-236.

Analytics

Added to PP
2023-03-07

Downloads
18 (#1,110,421)

6 months
7 (#702,633)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations