CM-Triviality and stable groups

Journal of Symbolic Logic 63 (4):1473-1495 (1998)
  Copy   BIBTEX

Abstract

We define a generalized version of CM-triviality, and show that in the presence of enough regular types, or solubility, a stable CM-trivial group is nilpotent-by-finite. A torsion-free small CM-trivial stable group is abelian and connected. The first result makes use of a generalized version of the analysis of bad groups

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,757

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Reducts of Stable, CM-Trivial Theories.Herwig Nübling - 2005 - Journal of Symbolic Logic 70 (4):1025 - 1036.
Mekler's construction preserves CM-triviality.Andreas Baudisch - 2002 - Annals of Pure and Applied Logic 115 (1-3):115-173.
The geometry of forking and groups of finite Morley rank.Anand Pillay - 1995 - Journal of Symbolic Logic 60 (4):1251-1259.
A free pseudospace.Andreas Baudisch & Anand Pillay - 2000 - Journal of Symbolic Logic 65 (1):443-460.
Ample dividing.David M. Evans - 2003 - Journal of Symbolic Logic 68 (4):1385-1402.
CM-triviality and generic structures.Ikuo Yoneda - 2003 - Archive for Mathematical Logic 42 (5):423-433.
Supersimple ω-categorical groups and theories.David Evans & Frank Wagner - 2000 - Journal of Symbolic Logic 65 (2):767-776.
A note on CM-Triviality and the geometry of forking.Anand Pillay - 2000 - Journal of Symbolic Logic 65 (1):474-480.
On omega-categorical simple theories.Daniel Palacín - 2012 - Archive for Mathematical Logic 51 (7-8):709-717.

Analytics

Added to PP
2009-01-28

Downloads
59 (#365,029)

6 months
15 (#212,687)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Mekler's construction preserves CM-triviality.Andreas Baudisch - 2002 - Annals of Pure and Applied Logic 115 (1-3):115-173.
CM-triviality and relational structures.Viktor Verbovskiy & Ikuo Yoneda - 2003 - Annals of Pure and Applied Logic 122 (1-3):175-194.

Add more citations

References found in this work

A new strongly minimal set.Ehud Hrushovski - 1993 - Annals of Pure and Applied Logic 62 (2):147-166.
Superstable groups.Ch Berline & D. Lascar - 1986 - Annals of Pure and Applied Logic 30 (1):1-43.
More on ${\germ R}$.Frank O. Wagner - 1992 - Notre Dame Journal of Formal Logic 33 (2):159-174.
Stable groups, mostly of finite exponent.Frank O. Wagner - 1993 - Notre Dame Journal of Formal Logic 34 (2):183-192.
On stable torsion-free nilpotent groups.Claus Grünenwald & Frieder Haug - 1993 - Archive for Mathematical Logic 32 (6):451-462.

Add more references