Abstract
A modal theory Z using the Guaspari witness comparison signs $\leq, is developed. The theory Z is similar to, but weaker than, the theory R of Guaspari and Solovay. Nevertheless, Z proves the independence of the Rosser fixed-point. A Kripke semantics for Z is presented and some arithmetical interpretations of Z are investigated. Then Z is enriched to ZI by adding a new modality sign for interpretability and by axioms expressing some facts about interpretability of theories. Two arithmetical interpretations of ZI are presented. The proofs of the validity of the axioms of ZI in arithmetical interpretations use some strengthening of Solovay's result about interpretability in Godel-Bernays set theory