On varieties of biresiduation algebras

Studia Logica 83 (1-3):425-445 (2006)
  Copy   BIBTEX

Abstract

A biresiduation algebra is a 〈/,\,1〉-subreduct of an integral residuated lattice. These algebras arise as algebraic models of the implicational fragment of the Full Lambek Calculus with weakening. We axiomatize the quasi-variety B of biresiduation algebras using a construction for integral residuated lattices. We define a filter of a biresiduation algebra and show that the lattice of filters is isomorphic to the lattice of B-congruences and that these lattices are distributive. We give a finite basis of terms for generating filters and use this to characterize the subvarieties of B with EDPC and also the discriminator varieties. A variety generated by a finite biresiduation algebra is shown to be a subvariety of B. The lattice of subvarieties of B is investigated; we show that there are precisely three finitely generated covers of the atom.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,506

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
51 (#475,304)

6 months
11 (#332,048)

Historical graph of downloads
How can I increase my downloads?