Abstract
We consider a stochastic process which is described by a continuous-time Markov chain on only short time-scales and constrained to conserve a number of hidden quantities on long time-scales. We assume that the transition matrix of the Markov chain is given and the conserved quantities are known to exist, but not explicitly given. To study the stochastic dynamics we propose to use the principle of stationary entropy production. Then the problem can be transformed into a variational problem for a suitably defined “action” and with time-dependent Lagrange multipliers. We show that the stochastic dynamics can be described by a Schrödinger equation, with Lagrange multipliers playing the role of phases, whenever the transition matrix is symmetric or the detailed balance condition is satisfied, the system is not too far from the equilibrium and the number of the conserved quantities is large.