Secure Fingerprint Authentication Using Deep Learning and Minutiae Verification

Journal of Intelligent Systems 29 (1):1379-1387 (2019)
  Copy   BIBTEX

Abstract

Nowadays, there has been an increase in security concerns regarding fingerprint biometrics. This problem arises due to technological advancements in bypassing and hacking methodologies. This has sparked the need for a more secure platform for identification. In this paper, we have used a deep Convolutional Neural Network as a pre-verification filter to filter out bad or malicious fingerprints. As deep learning allows the system to be more accurate at detecting and reducing false identification by training itself again and again with test samples, the proposed method improves the security and accuracy by multiple folds. The implementation of a novel secure fingerprint verification platform that takes the optical image of a fingerprint as input is explained in this paper. The given input is pre-verified using Google’s pre-trained inception model for deep learning applications, and then passed through a minutia-based algorithm for user authentication. Then, the results are compared with existing models.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Adversarial Sampling for Fairness Testing in Deep Neural Network.Tosin Ige, William Marfo, Justin Tonkinson, Sikiru Adewale & Bolanle Hafiz Matti - 2023 - International Journal of Advanced Computer Science and Applications 14 (2).

Analytics

Added to PP
2019-12-28

Downloads
20 (#1,038,527)

6 months
4 (#1,247,093)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references