Abstract
A structural (as opposed to Zadeh's quantitative) approach to fuzziness is given, based on the operator "very", which is added to the language of set theory together with some elementary axioms about it. Due to the axiom of foundation and to a lifting axiom, the operator is proved trivial on the cumulative hierarchy of ZF. So we have to drop either foundation or lifting. Since fuzziness concerns complemented predicates rather than sets, a class theory is needed for the very operator. And of them the Kelley-Morse (KM) theory is more appropriate for reasons of class existence. Several definable realizations of the very-operator are presented in KM⁻. In the last section we consider the operator "very" without the lifting axiom on classes of urelements. To each structurally fuzzy set X a traditional quantitative fuzzy set X̄ is assigned -- its quantitative representation. This way we are able partly to recover ordinary fuzzy sets from the structurally fuzzy ones