A Generic Figures Reconstruction of Peirce’s Existential Graphs (Alpha)

Erkenntnis 87 (2):623-656 (2020)
  Copy   BIBTEX

Abstract

We present a category-theoretical analysis, based on the concept of generic figures, of a diagrammatic system for propositional logic (Peirce’s Existential Graphs α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}). The straightforward construction of a presheaf category EGα∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {E}}}{{\mathcal {G}}}_{\alpha ^{*}}$$\end{document} of cuts-only Existential Graphs (equivalent to the well-studied category of finite forests) provides a basis for the further construction of the category EGα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {E}}}{{\mathcal {G}}}_\alpha $$\end{document} which introduces variables in a reconstructedly generic, or label-free, mode. Morphisms in these categories represent syntactical embeddings or, equivalently but dually, extensions. Through the example of Peirce’s system, it is shown how the generic figures approach facilitates the formal investigation of relations between syntax and semantics in such diagrammatic systems.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,795

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
The countable existentially closed pseudocomplemented semilattice.Joël Adler - 2017 - Archive for Mathematical Logic 56 (3-4):397-402.
Comparison of fine structural mice via coarse iteration.F. Schlutzenberg & J. R. Steel - 2014 - Archive for Mathematical Logic 53 (5-6):539-559.

Analytics

Added to PP
2022-03-19

Downloads
22 (#981,487)

6 months
9 (#509,115)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Rocco Gangle
Endicott College

References found in this work

Laws of form.George Spencer-Brown - 1969 - New York,: Julian Press.
Logic and Visual Information.Eric Hammer - 1995 - CSLI Publications.
Iconicity and Abduction.Rocco Gangle & Gianluca Caterina - 2016 - New York, USA: Springer. Edited by Rocco Gangle.

View all 9 references / Add more references