Predictive Analysis of Economic Chaotic Time Series Based on Chaotic Genetics Combined with Fuzzy Decision Algorithm

Complexity 2021:1-12 (2021)
  Copy   BIBTEX

Abstract

The irreversibility in time, the multicausality on lines, and the uncertainty of feedbacks make economic systems and the predictions of economic chaotic time series possess the characteristics of high dimensionalities, multiconstraints, and complex nonlinearities. Based on genetic algorithm and fuzzy rules, the chaotic genetics combined with fuzzy decision-making can use simple, fast, and flexible means to complete the goals of automation and intelligence that are difficult to traditional predicting algorithms. Moreover, the new combined method’s ergodicity can perform nonrepetitive searches in a global scope, hence improving the algorithm’s accuracy and efficiency. On the basis of summarizing and analyzing previous research works, this paper expounded the research status and significance of the prediction of economic chaotic time series, elaborated the development background, current status, and future challenges of the combined algorithm of chaotic genetics with fuzzy decision, introduced the basic principles of chaotic genetic algorithm and fuzzy decision algorithm, constructed a prediction model for economic chaotic time series, performed parameter synchronization optimization and moderate function construction, analyzed the prediction processes of economic chaotic time series, conducted phase space reconstruction and correlation dimension calculation, and finally carried out a simulation experiment with its result analysis. The study results show that the algorithm of chaotic genetics combined with fuzzy decision-making can dynamically adjust chaotic mutation operators and summarize fussy expert experiences. The phase space of its reconstructed chaotic attractor has high-precision predictability and can find orderly processes from changeable economic results, which in turn can be used to analyze and predict the complex economic chaotic time series. The study results of this paper provide a reference for further research on predictive analysis of economic chaotic time series based on chaotic genetics combined with fuzzy decision algorithm.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-04-18

Downloads
12 (#1,368,341)

6 months
4 (#1,247,093)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references