On the existence of indiscernible trees

Annals of Pure and Applied Logic 163 (12):1891-1902 (2012)
  Copy   BIBTEX

Abstract

We introduce several concepts concerning the indiscernibility of trees. A tree is by definition an ordered set such that, for any a∈O, the initial segment {b∈O:b

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,394

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Twilight graphs.J. C. E. Dekker - 1981 - Journal of Symbolic Logic 46 (3):539-571.
Can a small forcing create Kurepa trees.Renling Jin & Saharon Shelah - 1997 - Annals of Pure and Applied Logic 85 (1):47-68.
Large cardinals and iteration trees of height ω.Alessandro Andretta - 1991 - Annals of Pure and Applied Logic 54 (1):1-15.
On the existence of regular types.Saharon Shelah & Steven Buechler - 1989 - Annals of Pure and Applied Logic 45 (3):277-308.
Trees and -subsets of ω1ω1.Alan Mekler & Jouko Vaananen - 1993 - Journal of Symbolic Logic 58 (3):1052-1070.
Finite Tree Property for First-Order Logic with Identity and Functions.Merrie Bergmann - 2005 - Notre Dame Journal of Formal Logic 46 (2):173-180.
A special class of almost disjoint families.Thomas E. Leathrum - 1995 - Journal of Symbolic Logic 60 (3):879-891.
Mycielski among trees.Marcin Michalski, Robert Rałowski & Szymon Żeberski - 2021 - Mathematical Logic Quarterly 67 (3):271-281.
The isomorphism problem for ω-automatic trees.Dietrich Kuske, Jiamou Liu & Markus Lohrey - 2013 - Annals of Pure and Applied Logic 164 (1):30-48.

Analytics

Added to PP
2013-12-12

Downloads
268 (#100,445)

6 months
5 (#1,042,355)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

On model-theoretic tree properties.Artem Chernikov & Nicholas Ramsey - 2016 - Journal of Mathematical Logic 16 (2):1650009.
Tree indiscernibilities, revisited.Byunghan Kim, Hyeung-Joon Kim & Lynn Scow - 2014 - Archive for Mathematical Logic 53 (1-2):211-232.
Indiscernibles, EM-Types, and Ramsey Classes of Trees.Lynn Scow - 2015 - Notre Dame Journal of Formal Logic 56 (3):429-447.
Dense codense predicates and the NTP 2.Alexander Berenstein & Hyeung-Joon Kim - 2016 - Mathematical Logic Quarterly 62 (1-2):16-24.
On the antichain tree property.JinHoo Ahn, Joonhee Kim & Junguk Lee - 2022 - Journal of Mathematical Logic 23 (2).

View all 10 citations / Add more citations

References found in this work

Notions around tree property 1.Byunghan Kim & Hyeung-Joon Kim - 2011 - Annals of Pure and Applied Logic 162 (9):698-709.
Lascar strong types in some simple theories.Steven Buechler - 1999 - Journal of Symbolic Logic 64 (2):817-824.
A Supersimple Nonlow Theory.Enrique Casanovas & Byunghan Kim - 1998 - Notre Dame Journal of Formal Logic 39 (4):507-518.

Add more references