Extracting plans from reinforcement learners

Abstract

forcement learning algorithms that generate only reactive policies and existing probabilistic planning algorithms that requires a substantial amount of a priori knowledge in order to plan we devise a two stage bottom up learning to plan process in which rst reinforcement learn ing dynamic programming is applied without the use of a priori domain speci c knowledge to acquire a reactive policy and then explicit plans are extracted from the learned reactive policy Plan extraction is based on a beam search algorithm that performs temporal projection in a restricted fashion guided by the value functions resulting from reinforcement learn ing dynamic programming..

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 104,804

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-06-13

Downloads
9 (#1,596,657)

6 months
9 (#453,310)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references