SMS Spam Detection using Machine Learning

Journal of Science Technology and Research (JSTAR) 6 (1):1-19 (2025)
  Copy   BIBTEX

Abstract

SMS spam has become a widespread issue, leading to significant inconvenience and security risks for users. Detecting and filtering out such spam messages is crucial for enhancing the user experience and ensuring privacy. TThe dataset used for training and testing the model consists of labeled SMS messages, which are processed using feature extraction techniques such as TF-IDF and word tokenization. Several machine learning algorithms, including Naive Bayes, Support Vector Machine (SVM), and Random Forest, are evaluated to determine the best-performing model for spam detection. The system is trained and tested using a variety of performance metrics, including accuracy, precision, recall, and F1-score. The results show that machine learning models, particularly Naive Bayes, exhibit high accuracy in distinguishing spam from legitimate messages. This system can be implemented in real-time applications such as mobile phones and email services to improve spam detection and reduce unwanted content. By automating the spam filtering process, the system enhances the efficiency and reliability of communication systems.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

SMS SPAM DETECTION USING MACHINE LEARNING.G. Nikhil - 2024 - International Journal of Engineering Innovations and Management Strategies 1 (11):1-14.
Fake Profile Detection on Social Networking Websites using Machine Learning.R. T. Subhalakshmi - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-18.
Credit Card Fraud Detection _System using Machine Learning (13th edition).Sree C. Uma - 2024 - International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 13 (12):1758-1760. Translated by Sree C Uma.
Human Stress Detection Based on Sleeping Habits Using Machine Learning Algorithms.S. Venkatesh - 2025 - Journal of Science Technology and Research (JSTAR) 6 (1):1-15.
Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
OPTIMIZED DRIVER DROWSINESS DETECTION USING MACHINE LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):395-400.
Machine Learning and Job Posting Classification: A Comparative Study.Ibrahim M. Nasser & Amjad H. Alzaanin - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (9):06-14.

Analytics

Added to PP
2025-01-29

Downloads
400 (#78,194)

6 months
400 (#5,180)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.Tambi Varun Kumar - 2024 - International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 13 (7):2086-2093.
Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.Tambi Varun Kumar - 2024 - International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 12 (10):2382-2388.
A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.Tambi Varun Kumar - 2024 - International Journal of Innovative Research in Computer and Communication Engineering 12 (1):157-164.
A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.Tambi Varun Kumar - 2024 - International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 11 (5):2283-2291.

Add more references