Kleene's proof of g¨odel's theorem
Abstract
There is a familiar derivation of G¨ odel’s Theorem from the proof by diagonalization of the unsolvability of the Halting Problem. That proof, though, still involves a kind of self-referential trick, as we in effect construct a sentence that says ‘the algorithm searching for a proof of me doesn’t halt’. It is worth showing, then, that some core results in the theory of partial recursive functions directly entail G¨ odel’s First Incompleteness Theorem without any further self-referential trick.